Synthesis of Grevillins, Novel Pyrandione Pigments of Fungi. Biogenetic Interrelationships between Grevillins, Pulvinic Acids, Terphenylquinones and Xylerythrins

Gerald Pattenden, ${ }^{*, a}$ Neil A. Pegg ${ }^{a}$ and Ronald W. Kenyon ${ }^{b}$
${ }^{a}$ Department of Chemistry, The University, Nottingham NG7 2RD, UK
${ }^{\text {b }}$ /CI Specialities, Blackley, Manchester, M9 3DA, UK

A synthesis of the grevillin group of pyrandione pigments e.g. 3, 23 and 24 present in fungi is described. The synthesis, which is based on a biogenetic model, uses bis-benzylacyloins 9 and their corresponding oxalate derivatives as key intermediates (Scheme 3). Treatment of the grevillins 25-c with sodium ethoxide in ethanol effects their quantitative isomerisation into the corresponding terphenylquinone pigments $4 \mathbf{a}-\mathbf{c}$. Perkin-type condensations between the terphenylquinones 4 and arylacetic acids in the presence of sodium acetate-acetic anhydride then produces the xylerythrin pigments 29a-e, whereas rearrangements of 4 in the presence of dimethyl sulphoxide leads to pulvinic acid derivatives, e.g. 31, 32 and 5 . These synthetic studies interrelate the biosynthetic origins of the pigment types 3, 4,5 and 8 together with the related pulvinone 6 and furanone 7 fungal pigments.

Grevillin is the generic name used to describe the group of orange and red pyrandione pigments e.g. 3 which have been isolated from fungi of the genus Suillus. ${ }^{1}$ The grevillins co-occur with the related terphenylquinones 4 and pulvinic acids 5 , and they have their biogenetic origins in the dimer 2 derived from enzymatic conversion of arylpyruvic acid 1 (Scheme 1). ${ }^{2}$ The

Scheme 1
arylpyruvic acid dimer 2 also serves as the central intermediate in the biosynthesis of the terphenylquinones 4 , the pulvinic acids 5 , in addition to the pulvinone 6, furanone 7 and xylerythrin 8 families of fungal pigments (Scheme 2). ${ }^{3}$ During investigations into the structure, the origins and the biogenetic interrelationships between the fungal pigment types 3-8, we have earlier described concise syntheses of members of the pulvinone ${ }^{4}$ and the pulvinic acid ${ }^{5}$ groups of pigments. In continuation of these studies, we now describe a synthetic route to the grevillins 3 using benzylacyloins, viz. 9, as key intermediates (Scheme 3), ${ }^{6}$ and illustrate their conversions in vitro into terphenylquinones 4 and thence the pulvinic acids 5 , and the xylerythrin group 8 of red quinone methide pigments found in the bark fungus Peniophora sanguinea.

Thus, using established methodology, ${ }^{7}$ addition of the Grignard reagent derived from 4-methoxybenzyl chloride to the O-trimethylsilyl cyanohydrin 10 first led to the unsymmetrically substituted benzylacyloin 11 in 71% yield. Addition of ethyl oxalyl chloride to the benzylacyloin 11 in the presence of

Scheme 3
triethylamine next led to the corresponding oxalate 12 , which with 1,5-diazabicyclo[5.4.0]undec-5-ene (DBU) in dimethylformamide (DMF) at $-15^{\circ} \mathrm{C}$ was smoothly converted into the dihydrogrevillin 13a. The direct oxidation-dehydrogenation of 13a to the corresponding grevillin proved problematic, e.g. 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, Fremy's salt and palladium on charcoal led to recovered starting material or to intractable gums. Methylation of 13 a using diazomethane, however, proceeded smoothly producing the methyl ether 13b, which when treated with bromine in acetic acid ${ }^{8}$ gave the

10

12

14

11

$\mathrm{Ar}^{1}=\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe})-3,4, \quad \mathrm{Ar}^{2}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4$
bromo derivative 14 in 77% yield. Elimination of the elements of hydrobromic acid from 14 in the presence of DBU, followed by demethylation of the resulting methyl grevillin 15 in the presence of boron tribromide ${ }^{9}$ finally produced grevillin B 3 as red crystals which showed spectroscopic data identical with those of natural material produced by the fruiting bodies of Suillus grevillei. ${ }^{10}$

In a similar series of reactions, the cyanohydrins 16a and 16b were elaborated to the corresponding grevillins 23 and 24 respectively (Scheme 4).

The isomeric relationships between the grevillin 25 and terphenylquinone 4 structures, which has also been examined by Steglich and co-workers, ${ }^{11}$ is formally analogous to the relationship between the ylidenebutenolide and cyclopentenedione structures, viz. 26 and 27, which we have examined in detail. ${ }^{12}$ Indeed, this analogy could be fully demonstrated when the grevillin 25 was treated with sodium ethoxide in ethanol. A dense purple precipitate formed almost immediately, and acidification gave the known terphenylquinone $\mathbf{4 a}{ }^{13}$ in 90% yield. In a similar manner the synthetic grevillin derivatives $\mathbf{2 5 b}$ and 25 c could be isomerised in the presence of sodium ethoxide to the terphenylquinones $\mathbf{4 b}$ and $\mathbf{4 c}$ respectively.
Naturally occurring terphenylquinones have previously been linked biogenetically to the xylerythrin 8 and the pulvinic acid 5 families of natural products. ${ }^{2,3}$ In our studies we have added further support for this biogenetic link with: (i) the conversion of the terphenylquinones $\mathbf{4 a}$ and $\mathbf{4 c}$ into the corresponding xylerythrins 29a-e following Perkin reactions with arylacetic acids (to 28) ${ }^{14}$ and demethylation in the presence of hydrobromic acid-acetic acid, and (ii) the conversions of $\mathbf{4 a}$ and $\mathbf{4 b}$ into the pulvinic acids 5 a and $5 \mathrm{~b} / 5 \mathrm{c}$ respectively via the corresponding dilactone intermediates 30a and 30b, ${ }^{15}$ as outlined in Scheme 5.

Experimental

For general experimental details see ref. 16. For NMR spectroscopic data J values are given in Hz. Ether refers to diethyl ether. Light petroleum refers to the fraction boiling in the range $60-80^{\circ} \mathrm{C}$.

3-(3,4-Dimethoxyphenyl)-2-trimethylsilyloxypropanenitrile 10.-3,4-Dimethoxyphenylacetaldehyde (5.2 g) was added dropwise onto a stirred mixture of trimethylsilyl cyanide (3.6

$\begin{aligned} \text { a } \mathrm{Ar} & =\mathrm{Ph}_{6} \\ \text { b } & =\mathrm{H}_{4} \mathrm{OMe}-4\end{aligned}$

$\mathrm{Ar}=\mathrm{Ar}^{1}=\mathrm{Ph}$

Scheme 4 Reagents: i, $\mathrm{PhCH}_{2} \mathrm{MgCl}$; ii, $\mathrm{CO}_{2} \mathrm{EtCOCl}, \mathrm{Et}_{3} \mathrm{~N}$; iii, DBU, DMF; iv, $\mathrm{CH}_{2} \mathrm{~N}_{2} ;$ v, $\mathrm{Br}_{2}, \mathrm{AcOH} ;$ vi, DBU

a; $\mathrm{Ar}=\mathrm{Ar}^{1}=\mathrm{Ph}$
b; $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-4, \mathrm{Ar}^{1}=\mathrm{Ph}$
c; $\mathrm{Ar}=\mathrm{PhCH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}, \mathrm{Ar}^{1}=\mathrm{Ph}$

cm^{3}, 1 equiv.) ${ }^{17}$ and zinc iodide (1 crystal) at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for a further 15 min and then distilled to give the title compound ($4.85 \mathrm{~g}, 60 \%$) as a colourless liquid, b.p. $140-145^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg}, v_{\text {max }}($ liquid film $) / \mathrm{cm}^{-1}$ $2960 \mathrm{~m}, 2250 \mathrm{w}, 1595 \mathrm{w}, 1515 \mathrm{~m}, 1455 \mathrm{~m}, 1425 \mathrm{~m}, 1335 \mathrm{w}, 1260 \mathrm{~s}$, $1240 \mathrm{~s}, 1160 \mathrm{~s}, 1145 \mathrm{~s}, 1105 \mathrm{~s}, 1030 \mathrm{~s}, 920 \mathrm{~m}, 850 \mathrm{~s}, 760 \mathrm{~m}$ and 730 s ;

Scheme 5 Reagents: i, DMSO, $\mathrm{Ac}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}$; ii, $\mathrm{NaOMe}, \mathrm{MeOH}$; iii, c. HCl ; iv, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; v, $\mathrm{Me}_{3} \mathrm{SiI}$
δ_{H} (no solvent) $0.00(\mathrm{OTMS}), 2.81$ (d, $\left.J 7.0, \mathrm{CH}_{2}\right), 3.65$ $(2 \times \mathrm{OMe}), 4.35(\mathrm{t}, J 7.0, \mathrm{CH})$ and $6.65(3 \times \operatorname{aryl}=\mathrm{CH})$.

4-(3,4-Dimethoxyphenyl)-3-hydroxy-1-(4-methoxyphenyl)-butan-2-one 11 .-A solution of compound $10(1 \mathrm{~g})$ in dry ether $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of 4-methoxybenzylmagnesium chloride (1.5 equiv.) in ether ($50 \mathrm{~cm}^{3}$) heated under reflux in an atmosphere of nitrogen. The mixture was heated under reflux for a further 3 h when a white precipitate formed. The mixture was allowed to cool to room temperature, and then poured onto ice-cooled dilute hydrochloric acid ($20 \mathrm{~cm}^{3}$). The two phase mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ overnight. The mixture was extracted with ether ($2 \times 20 \mathrm{~cm}^{3}$), and the combined ether extracts were dried and evaporated to leave a solid residue. Column chromatography then gave the title compound ($0.84 \mathrm{~g}, 71 \%$), which recrystallised from light petroleum as white needles, m.p. $81.5-82.5^{\circ} \mathrm{C}, v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3550 \mathrm{w}, 2950 \mathrm{~m}, 1720 \mathrm{~s}, 1615 \mathrm{~s}, 1530 \mathrm{~m}, 1475 \mathrm{~s}, 1305 \mathrm{~m}, 1280 \mathrm{~m}$, 1160 s and $865 \mathrm{w} ; \delta_{\mathrm{H}} 2.80(\mathrm{dd}, J 6.8$ and $14.4,1 \mathrm{H}), 3.10(\mathrm{dd}, J 4.7$ and $14.4,1 \mathrm{H}), 3.16(\mathrm{br}, \mathrm{OH}), 3.72\left(\mathrm{CH}_{2}\right), 3.78(\mathrm{OMe}), 3.83$ (OMe), $3.86(\mathrm{OMe}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.90(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH})$, $6.84(\mathrm{~d}, J 9.0,2 \times$ aryl $=\mathrm{CH})$ and $7.04(\mathrm{~d}, J 9.0,2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}}$ $39.8,44.9,55.3,55.8,55.9,76.7,111.3,112.5,114.2,121.3,124.9$,
128.9, 130.6, 148.1, 149.0, 158.8 and 209.5 (Found: C, 68.5; H, $6.7 \% ; \mathrm{M}^{+}, 330.1471 . \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$ requires $\mathrm{C}, 69.0 ; \mathrm{H}, 6.7 \% ; M$, 330.1467).

1-(3,4-Dimethoxyphenyl)-4-(4-methoxyphenyl)-3-oxobutan-2-yl Ethyl Oxalate 12.-A solution of compound $11(550 \mathrm{mg})$ and triethylamine ($224 \mathrm{~mm}^{3}, 1$ equiv.) in dry tetrahydrofuran (THF) ($25 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of ethyl oxalyl chloride ($235 \mathrm{~mm}^{3}, 1$ equiv.) in dry THF ($25 \mathrm{~cm}^{3}$) under nitrogen, whereupon a white precipitate formed immediately. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , and then poured onto hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3} ; 30 \mathrm{~cm}^{3}$). The mixture was extracted with ether $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ and the combined ether extracts were dried and evaporated to leave a crude residue. Column chromatography gave the oxalate (416 $\mathrm{mg}, 58 \%$) as a colourless oil, $v_{\max }$ (liquid film) $/ \mathrm{cm}^{-1} 2950 \mathrm{~m}$, $1770 \mathrm{~s}, 1750 \mathrm{~s}, 1615 \mathrm{w}, 1515 \mathrm{~m}, 1460 \mathrm{~m}, 1300 \mathrm{~m}, 1250 \mathrm{~s}, 1185 \mathrm{~s}, 1160 \mathrm{~s}$, $1030 \mathrm{~s}, 910 \mathrm{w}, 860 \mathrm{w}$ and $760 \mathrm{~s} ; \delta_{\mathrm{H}} 1.37\left(\mathrm{t}, J 7.2, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $3.06\left(\mathrm{~d}, J 6.3, \mathrm{CH}_{2}\right), 3.63\left(\mathrm{CH}_{2}\right), 3.78(\mathrm{OMe}), 3.83(\mathrm{OMe}), 4.36$ (q, J 7.2, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $5.36(\mathrm{t}, J 6.3,1 \mathrm{H}), 6.60-6.84(\mathrm{~m}$, $3 \times$ aryl CH), $6.80(\mathrm{~d}, J 9.0,2 \times$ aryl CH$)$ and $7.05(\mathrm{~d}, J 9.0$, $2 \times \operatorname{aryl} \mathrm{CH}) ; \delta_{\mathrm{C}} 13.9,36.6,46.1,55.2,55.8,55.9,63.4,80.6,111.2$, $112.6,114.2,121.6,124.3,127.3,127.3,130.8,148.3,149.0,156.9$, 159.0 and 203.4 (Found: $\mathrm{M}^{+}, 4.30 .1629 ; \mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{8}$ requires M, 430.1627).

6-(3,4-Dimethoxybenzyl)-3-hydroxy-4-(4-methoxyphenyl)-pyran-2,5-dione 13a.-A solution of compound $12(400 \mathrm{mg})$ in dry dimethylformamide (DMF) $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise, over 15 min , to a stirred solution of 1,5 -diazabicyclo[5.4.0] undec-5-ene ($277 \mathrm{~mm}^{3}, 2$ equiv.) in dry DMF (10 cm^{3}) at $-15^{\circ} \mathrm{C}$ under nitrogen. The resulting orange solution was stirred for 2 h and then poured onto hydrochloric acid (2 $\mathrm{mol} \mathrm{dm}^{-3} ; 20 \mathrm{~cm}^{3}$). The mixture was extracted with ether ($2 \times 20 \mathrm{~cm}^{3}$), and the combined extracts were washed with water ($3 \times 20 \mathrm{~cm}^{3}$), dried and evaporated to give the crude dione ($252 \mathrm{mg}, 71 \%$) which recrystallised from light petroleum as a cream powder, m.p. $132-135^{\circ} \mathrm{C}, \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 234(\varepsilon$ $17100), 253(\varepsilon 13000)$ and $334(\varepsilon 5900) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3380 \mathrm{br}$ $\mathrm{m}, 2960 \mathrm{w}, 1730 \mathrm{~s}, 1665 \mathrm{~s}, 1615 \mathrm{~s}, 1530 \mathrm{~s}, 1475 \mathrm{~m}, 1400 \mathrm{w}, 1365 \mathrm{~m}$, $1270 \mathrm{~s}, 1215 \mathrm{~s}, 1165 \mathrm{~m}, 1035 \mathrm{~m}, 840 \mathrm{w}$ and $785 \mathrm{w} ; \delta_{\mathrm{H}} 3.33(\mathrm{~d}, J 4.4$, CH_{2}), $3.73(\mathrm{OMe}), 3.82(\mathrm{OMe}), 3.84(\mathrm{OMe}), 5.31(\mathrm{t}, J 4.4, \mathrm{CH})$, $6.60(\mathrm{~d}, J 1.9,1 \times$ aryl $=\mathrm{CH}), 6.68(\mathrm{dd}, J 1.9$ and $8.2,1 \times$ aryl $\mathrm{CH}), 6.75(\mathrm{~d}, J 8.2,1 \times \operatorname{aryl}=\mathrm{CH}), 6.92(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH})$ and $7.29\left(\mathrm{~d}, J 8.9,2 \times\right.$ aryl CH); $\delta_{\mathrm{C}} 40.3,55.3,55.8,55.9,84.7$, $111.2,112.8,113.6,119.8,121.8,122.4,125.9,131.5,148.5$, $148.9,160.1,161.8$ and 191.6 (Found: C, $65.4 ; \mathrm{H}, 5.2 \%$; M^{+}, 384.1198. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{7}$ requires $\mathrm{C}, 65.6 ; \mathrm{H}, 5.2 \% ; M$, 384.1209).

6-(3,4-Dimethoxybenzyl)-3-methoxy-4-(4-methoxyphenyl)-pyran-2,5-dione 13b.-An ethereal solution of diazomethane was added to a solution of compound $13 \mathrm{a}(240 \mathrm{mg})$ in ether (10 cm^{3}) at $0^{\circ} \mathrm{C}$, until the solution remained pale yellow. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min , and then evaporated to dryness to leave the dione 13b ($243 \mathrm{mg}, 97 \%$) which recrystallised from methanol as orange needles, m.p. $107-109^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 232(\varepsilon 16700), 250$ sh ($\varepsilon 9040$), 271sh ($\varepsilon 6560$) and 329 ($\varepsilon 3380)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 \mathrm{w}, 2930 \mathrm{~m}, 1720 \mathrm{~s}$, $1670 \mathrm{~s}, 1595 \mathrm{~s}, 1505 \mathrm{~m}, 1445 \mathrm{~s}, 1420 \mathrm{~m}, 1350 \mathrm{~m}, 1285 \mathrm{~s}, 1250 \mathrm{~s}, 1140 \mathrm{~s}$, $1025 \mathrm{~s}, 860 \mathrm{w}, 830 \mathrm{w}, 805 \mathrm{w}, 760 \mathrm{~m}$ and $730 \mathrm{~m} ; \delta_{\mathrm{H}} 3.30\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$, 3.56 (OMe), 3.78 (OMe), 3.82 (OMe), 3.84 (OMe), 5.24 (dd, J 4.0 and $4.4, \mathrm{CH}), 6.64(\mathrm{~d}, J 1.9,1 \times$ aryl $=\mathrm{CH}), 6.70(\mathrm{dd}, J 1.9$ and $8.1,1 \times$ aryl $=\mathrm{CH}), 6.80(\mathrm{~d}, J 8.1,1 \times$ aryl $=\mathrm{CH}), 6.90(\mathrm{~d}, J$ $8.9,2 \times$ aryl $=\mathrm{CH})$ and $7.07(\mathrm{~d}, J 8.9,2 \times \mathrm{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 40.5$, $55.3,55.8,56.0,61.1,83.5,111.3,113.0,113.5,120.3,122.4,126.4$, 129.5, 131.5, 148.4, 149.0, 153.6, 158.6, 160.2 and 193.3 (Found: $\mathrm{M}^{+}, 398.1347 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}$ requires $M, 398.1359$).

6-Bromo-6-(3,4-dimethoxybenzyl)-3-methoxy-4-(4-methoxy-phenyl)pyran-2,5-dione 14.-A solution of bromine in acetic acid ($1 \% \mathrm{v} / \mathrm{v}$ solution; $0.65 \mathrm{~cm}^{3}, 1$ equiv.) ${ }^{8}$ was added dropwise over 15 min to a stirred solution of compound $\mathbf{1 3 b}(50 \mathrm{mg})$ in acetic acid ($2 \mathrm{~cm}^{3}$), under nitrogen. The mixture was stirred at room temperature for 2 h , diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water ($6 \times 20 \mathrm{~cm}^{3}$), dried and evaporated to leave the bromide $14(46 \mathrm{mg}, 77 \%)$ as an orange oil, $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm}$ $229(\varepsilon 19700), 254(\varepsilon 13000), 269(\varepsilon 11700)$ and $336(\varepsilon 4160)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2940 \mathrm{~m}, 2840 \mathrm{~m}, 1750 \mathrm{~s}, 1685 \mathrm{~s}, 1605 \mathrm{~s}, 1495 \mathrm{w}$, $1450 \mathrm{~m}, 1335 \mathrm{~s}, 1290 \mathrm{~s}, 1140 \mathrm{~s}, 1020 \mathrm{~m}, 960 \mathrm{w}, 910 \mathrm{w}$ and $865 \mathrm{w} ; \delta_{\mathrm{H}}$ 3.72 (d, J 14.2, 1 H$), 3.82(\mathrm{OMe}), 3.84(\mathrm{OMe}), 3.85(\mathrm{OMe}), 3.86$ $(\mathrm{OMe}), 3.95(\mathrm{~d}, J 14.2,1 \mathrm{H}), 6.76(\mathrm{~d}, J 8.1,1 \times \operatorname{aryl}=\mathrm{CH}), 6.84$ $(\mathrm{d}, J 1.9,1 \times$ aryl $=\mathrm{CH}), 6.86(\mathrm{dd}, J 8.1$ and $1.9,1 \times$ aryl $=\mathrm{CH})$, $6.95(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH})$ and $7.26(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH})$; $\delta_{\mathrm{C}} 46.1,55.4,55.9,56.0,61.5,91.2,111.1,113.8,114.3,120.5$, $123.9,125.8,127.8,131.9,148.6,148.9,150.4,156.3,160.6$ and 185.9 (Found: $\mathrm{M}^{+}, 478.0463$ and $476.0460 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BrO}_{7}$ requires $M, 478.0450$ and 476.0470). The bromide was used without further purification.

6-(3,4-Dimethoxybenzylidene)-3-methoxy-4-(4-methoxy-

phenyl)pyran-2,5-dione 15.-A solution of compound 14 (32 $\mathrm{mg})$ in dry benzene $\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of 1,5 -diazabicyclo[5.4.0]undec-5-ene $\left(10 \mathrm{~mm}^{3}, 1\right.$ equiv.) in dry benzene ($15 \mathrm{~cm}^{3}$) under nitrogen. After 10 min a black precipitate formed. The mixture was poured onto hydrochloric acid ($2 \mathrm{~mol} \mathrm{~cm}{ }^{-3} ; 10 \mathrm{~cm}^{3}$) and extracted with ether $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined ether extracts were dried and evaporated to leave a residue which was purified by column chromatography to give the trimethylgrevillin ($10.5 \mathrm{mg}, 40 \%$) as a solid which recrystallised from methanol as orange-yellow crystals, m.p. $175-176^{\circ} \mathrm{C}$ (lit., ${ }^{10} 177-179{ }^{\circ} \mathrm{C}$), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $230(\varepsilon 14000), 281(\varepsilon 10700), 336(\varepsilon 12000)$ and $410(\varepsilon 5670)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2920 \mathrm{~m}, 2830 \mathrm{~m}, 1740 \mathrm{~s}, 1680 \mathrm{~m}, 1610 \mathrm{~s}, 1590 \mathrm{~s}$, $1500 \mathrm{w}, 1460 \mathrm{~m}, 1445 \mathrm{~m}, 1425 \mathrm{~m}, 1360 \mathrm{~s}, 1340 \mathrm{~m}, 1150 \mathrm{~s}, 1100 \mathrm{~m}$, $1025 \mathrm{~m}, 915 \mathrm{~s}, 870 \mathrm{w}$ and 840 w ; $\delta_{\mathrm{H}} 3.86$ (OMe), $3.95(2 \times \mathrm{OMe})$, $3.97(\mathrm{OMe}), 6.93(\mathrm{~d}, J 8.5,1 \times \operatorname{aryl}=\mathrm{CH}), 6.98(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.04(1 \times=\mathrm{CH}), 7.38(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.50(\mathrm{dd}, J$ 2.0 and $8.5,1 \times$ aryl $=\mathrm{CH})$ and $7.58(\mathrm{~d}, J 2.0 \mathrm{H}, 1 \times$ aryl $=\mathrm{CH})$; $\delta_{\mathrm{C}} 55.3,56.0,61.3,111.2,113.6,114.0,120.3,121.1,125.1,128.8$, $131.8,133.8,143.1,149.1,150.9,151.3,155.4,160.4$ and 177.9 (Found: $\mathrm{M}^{+}, 369.1209 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{7}$ requires $M, 369.1209$).

3-Hydroxy-6-(3,4-dihydroxybenzylidene)-4-(4-hydroxy-

 phenyl)-pyran-2,5-dione (Grevillin B) 3.-A solution of boron tribromide in hexane ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 177 \mathrm{~mm}^{3}, 7$ equiv.) was added dropwise to a stirred solution of compound $15(10 \mathrm{mg})$ in dry dichloromethane $\left(10 \mathrm{~cm}^{3}\right)$ which was heated under reflux in a nitrogen atmosphere. The mixture was stirred and heated under reflux for a further 3.5 h , leading to a deep red precipitate. Concentrated hydrochloric acid ${ }^{10}\left(2 \mathrm{~cm}^{3}\right)$ was added, and the mixture was then stirred vigorously for an additional 30 min . The mixture was poured onto water $\left(15 \mathrm{~cm}^{3}\right)$ and then extracted with ethyl acetate $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined ethyl acetate extracts were washed successively with water $\left(30 \mathrm{~cm}^{3}\right)$, saturated aqueous mannitol ($30 \mathrm{~cm}^{3}$) and water ($30 \mathrm{~cm}^{3}$) and then dried and evaporated to leave a solid residue. Purification by column chromatography on acetylated polyamide gave the 'free' grevillin ($3.3 \mathrm{mg}, 38 \%$), which recrystallised from ethanol as red crystals, m.p. $258^{\circ} \mathrm{C}$ (decomp.) [lit., ${ }^{1 \mathrm{c}} 275^{\circ} \mathrm{C}$ (decomp.)/ lit., ${ }^{10} 350^{\circ} \mathrm{C}$ with $250^{\circ} \mathrm{C}$ (decomp.)]; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 286(\varepsilon$ 7250), 298sh ($\varepsilon 6820$) and $405(\varepsilon 5650)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370 \mathrm{br} \mathrm{s}$, $3040 \mathrm{~s}, 1725 \mathrm{~s}, 1610 \mathrm{~m}, 1580 \mathrm{~m}, 1515 \mathrm{~m}, 1450 \mathrm{~m}, 1380 \mathrm{~m}, 1300 \mathrm{~m}$, $1260 \mathrm{~s}, 1230 \mathrm{~s}, 1130 \mathrm{~m}, 1045 \mathrm{w}, 1010 \mathrm{w}, 875 \mathrm{w}, 850 \mathrm{w}, 780 \mathrm{w}$ and $735 \mathrm{w} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.88$ (d, $J 8.8,2 \times$ aryl $\left.=\mathrm{CH}\right), 6.92$ $(1 \times=\mathrm{CH}), 6.92(\mathrm{~d}, J 8.3,1 \times \operatorname{aryl}=\mathrm{CH}), 7.28(\mathrm{dd}, J 1.9$ and$8.3,1 \times$ aryl $=\mathrm{CH}), 7.43(\mathrm{~d}, J 8.8,2 \times$ aryl $=\mathrm{CH})$ and $7.60(\mathrm{~d}, J$ $1.9,1 \times$ aryl $=\mathrm{CH}$) (Found: $\mathrm{M}^{+}, 340.0579 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{7}$ requires $M, 340.0579$). The spectral data were identical with those reported by Edwards ${ }^{1 c}$ and by Steglich ${ }^{10}$ and their collaborators for the natural material.

3-Phenyl-2-trimethylsilyloxypropanenitrile 16a.-Phenylacetaldehyde $(13.6 \mathrm{~g})$ was added dropwise to a stirred mixture of trimethylsilyl cyanide ($15 \mathrm{~cm}^{3}, 1$ equiv.) and zinc iodide (1 crystal) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred for a further 15 min and then distilled to give the title compound ($24.6 \mathrm{~g}, 99 \%$), ${ }^{17}$ as a colourless liquid, b.p. $90-94{ }^{\circ} \mathrm{C}$ at $0.5 \mathrm{mmHg}, v_{\text {max }}($ liquid film $) / \mathrm{cm}^{-1} 2960 \mathrm{br} \mathrm{m}, 1950 \mathrm{w}, 1720 \mathrm{w}$, $1605 \mathrm{w}, 1500 \mathrm{~m}, 1465 \mathrm{~m}, 1365 \mathrm{~m}, 1260 \mathrm{~s}, 1115 \mathrm{~s}, 940 \mathrm{~m}, 880 \mathrm{~s}, 860 \mathrm{~s}$, 765 s and $705 \mathrm{~s} ; \delta_{\mathrm{H}}$ (no solvent) 0.00 (OTMS), $2.86\left(\mathrm{~d}, J 6.3, \mathrm{CH}_{2}\right)$, $4.42(\mathrm{t}, J 6.3, \mathrm{CH})$ and $7.15(5 \times$ aryl $=\mathrm{CH})$.

3-Hydroxy-1,4-diphenylbutan-2-one 17a.-A solution of compound $16 \mathrm{a}(14 \mathrm{~g})$ in dry ether $\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of benzylmagnesium bromide (1.5 equiv.) in ether $\left(400 \mathrm{~cm}^{3}\right)$ under reflux in an atmosphere of nitrogen. The mixture was heated under reflux for a further 3 h when a white precipitate formed. The mixture was allowed to cool to room temperature, and then poured onto ice cooled dilute hydrochloric acid $\left(300 \mathrm{~cm}^{3}\right)$. The two-phase mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ overnight. The mixture was extracted with ether ($2 \times 200 \mathrm{~cm}^{3}$), and the combined ether extracts were then dried and evaporated to leave a solid residue. Purification by column chromatography gave the title compound $(13.75 \mathrm{~g}$, 90%), which recrystallised from light petroleum as white prismatic crystals, m.p. $56-58^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{18} 59{ }^{\circ} \mathrm{C}$), $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3490 \mathrm{~m}, 3020 \mathrm{~m}, ~ 2910 \mathrm{~m}, 1705 \mathrm{~s}, 1600 \mathrm{w}, 1490 \mathrm{w}, 1395 \mathrm{~m}, 1325 \mathrm{~m}$, $1105 \mathrm{~m}, 1050 \mathrm{~s}$ and $910 \mathrm{w} ; \delta_{\mathrm{H}} 2.80(\mathrm{dd}, J 7.3$ and $14.1, \mathrm{CH}), 3.10$ (dd, $J 4.8$ and $14.1, \mathrm{CH}), 3.31(\mathrm{~d}, J 5.7, \mathrm{OH}), 3.69\left(\mathrm{CH}_{2}\right), 4.40(\mathrm{~m}$, $\mathrm{CH})$ and $7.00-7.40(\mathrm{~m}, 10 \times \mathrm{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 40.0,45.4,76.8,126.7$, 127.0, 128.4, 128.6, 129.3, 129.5, 133.3, 136.7 and 209.2 (Found: C, $80.15 ; \mathrm{H}, 6.9 \% ; \mathrm{M}^{+}, 240.1160$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 80.0 ; $\mathrm{H}, 6.7 \%$; $M, 240.1151$).

3-Oxo-1,4-diphenylbutan-2-yl Ethyl Oxalate 18a.-A solution of compound $17 \mathbf{a}(500 \mathrm{mg})$ and triethylamine ($293 \mathrm{~mm}^{3}, 1$ equiv.) in dry THF ($15 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of ethyl oxalyl chloride ($235 \mathrm{~mm}^{3}, 1$ equiv.) in dry THF $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen, whereupon a white precipitate formed immediately. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , and then poured onto hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 30 \mathrm{~cm}^{3}$). The mixture was extracted with ether $\left(2 \times 30 \mathrm{~cm}^{3}\right)$, and the combined ether extracts were then dried and evaporated to leave an oily residue. Column chromatography of the latter gave the oxalate $\left(480 \mathrm{mg}, 68 \%\right.$), as a colourless oil, $v_{\text {max }}$ (liquid $\mathrm{film}) / \mathrm{cm}^{-1} 3000 \mathrm{br} \mathrm{w}, 1765 \mathrm{~s}, 1745 \mathrm{~s}, 1600 \mathrm{w}, 1495 \mathrm{w}, 1455 \mathrm{w}$, $1310 \mathrm{~m}, 1185 \mathrm{~s}, 1010 \mathrm{~m}, 920 \mathrm{w}, 865 \mathrm{w}, 750 \mathrm{~m}$ and $750 \mathrm{~s} ; \delta_{\mathrm{H}} 1.28(\mathrm{t}, J$ $6.5, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.10 (dd, $J 5.4$ and $\left.7.2, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{CH}_{2}\right)$, $4.25\left(\mathrm{q}, J 6.5, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.45(\mathrm{dd}, J 5.4$ and $7.2, \mathrm{CH})$ and $7.00-7.45(\mathrm{~m}, 10 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{c}} 13.9,36.9,46.9,63.4,80.4$, $127.3,127.4,128.7,129.5,129.7,132.4,135.0,156.8,156.9$ and 202.9 (Found: $\mathrm{M}^{+}, 340.1315 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$ requires $M, 340.1310$).

6-Benzyl-3-hydroxy-4-phenylpyran-2,5-dione 19a.-A solution of compound 18 a (4 g) in dry DMF $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise, over 15 min , to a stirred solution of 1,5 -diazabicyclo[5.4.0] undec-5-ene ($3.6 \mathrm{~cm}^{3}, 2$ equiv.) in dry DMF (100 cm^{3}) at $-15^{\circ} \mathrm{C}$ under nitrogen. The resulting orange-red solution was stirred for a further 3 h and then poured onto hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 100 \mathrm{~cm}^{3}$). The mixture was extracted with ether ($2 \times 100 \mathrm{~cm}^{3}$), and the combined ether extracts were then washed with water ($3 \times 75 \mathrm{~cm}^{3}$), dried and evaporated to leave a cream solid. Recrystallisation of the latter
from heptane gave the title compound $(3.14 \mathrm{~g}, 91 \%)$ as a white powder, m.p. $120-122^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 235(\varepsilon 11540)$ and 307 ($\varepsilon 8120$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400 \mathrm{~s}, 3040 \mathrm{br} \mathrm{m}, 1720 \mathrm{~s}, 1665 \mathrm{~s}$, $1600 \mathrm{w}, 1490 \mathrm{w}, 1360 \mathrm{~s}, 1280 \mathrm{~s}, 1180 \mathrm{~s}, 1075 \mathrm{~m}, 1040 \mathrm{~m}, 950 \mathrm{w}$ and $885 \mathrm{w} ; \delta_{\mathrm{H}} 3.38\left(\mathrm{~d}, J 4.7, \mathrm{CH}_{2}\right), 5.31(\mathrm{t}, J 4.7, \mathrm{CH})$ and $7.10-7.45$ ($\mathrm{m}, 10 \times \operatorname{aryl}=\mathrm{CH}$); $\delta_{\mathrm{C}} 40.4,84.7,127.6,128.0,128.7,129.0$, $133.7,149.0,161.4$ and 191.0 (Found: C, $73.3 ; \mathbf{H}, 4.9 \% ; \mathbf{M}^{+}$, 294.0877. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}$ requires: C, $73.5 ; \mathrm{H}, 4.8 \% ; M, 294.0892$).

6-Benzyl-3-methoxy-4-phenylpyran-2,5-dione 20a.-An ethereal solution of diazomethane was added to a solution of compound 19a (500 mg) in ether ($30 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, until the solution remained pale yellow. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , and then evaporated to dryness to leave an oily residue. Column chromatography gave the title compound (429 $\mathrm{mg}, 82 \%$), as a colourless oil, $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 228$ ($\varepsilon 6660$), $248 \operatorname{sh}(\varepsilon 4150), 292(\varepsilon 3130)$ and $302(\varepsilon 3020)$; $v_{\text {max }}($ liquid film) $/ \mathrm{cm}^{-1} 3000 \mathrm{br} \mathrm{w}, 1735 \mathrm{~s}, 1675 \mathrm{~s}, 1615 \mathrm{~m}, 1600 \mathrm{~m}, 1495 \mathrm{w}$, $1445 \mathrm{w}, 1355 \mathrm{~m}, 1330 \mathrm{~m}, 1295 \mathrm{~m}, 1210 \mathrm{~s}, 1150 \mathrm{~s}, 1080 \mathrm{w}, 1060 \mathrm{w}$, $910 \mathrm{w}, 820 \mathrm{w}, 755 \mathrm{~s}$ and $695 \mathrm{~s} ; \delta_{\mathrm{H}} 3.30\left(\mathrm{~d}, J 4.5, \mathrm{CH}_{2}\right), 3.44$ (OMe), $5.18(\mathrm{t}, J 4.5, \mathrm{CH})$ and $6.90-7.40(\mathrm{~m}, 10 \times$ aryl $=\mathrm{CH}), \delta_{\mathrm{C}} 40.8$, $61.3,83.5,127.6,128.0,128.5,128.8,129.1,129.6,130.0,130.3$, 134.0, 154.0, 158.2 and 192.6 (Found: $\mathrm{M}^{+}, 308.1048 . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $M, 308.1049$).

6-Benzyl-6-bromo-3-methoxy-4-phenylpyran-2,5-dione 21a.A solution of bromine in acetic acid $(0.5 \% \mathrm{v} / \mathrm{v}$ solution; 12.9 $\mathrm{cm}^{3}, 1$ equiv.) was added dropwise over 15 min to a stirred solution of compound $\mathbf{2 0 a}(400 \mathrm{mg})$ in acetic acid $\left(12 \mathrm{~cm}^{3}\right)$, under nitrogen. The mixture was stirred at room temperature for 3 h and then diluted with water $\left(50 \mathrm{~cm}^{3}\right)$ and extracted with ether ($2 \times 50 \mathrm{~cm}^{3}$). The combined ether extracts were washed with water $\left(4 \times 30 \mathrm{~cm}^{3}\right)$, dried and evaporated to leave the bromide ($452 \mathrm{mg}, 90 \%$), as a light yellow oil, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 229$ ($\varepsilon 12500$), $291(\varepsilon 6360)$ and $302(\varepsilon 6070)$; $v_{\max }($ liquid film $) / \mathrm{cm}^{-1}$ $3000 \mathrm{br} \mathrm{m}, 1750 \mathrm{~s}, 1685 \mathrm{~s}, 1610 \mathrm{~s}, 1600 \mathrm{~s}, 1495 \mathrm{~m}, 1450 \mathrm{~s}, 1430 \mathrm{w}$, $1350 \mathrm{~s}, 1310 \mathrm{~s}, 1190 \mathrm{~s}, 1130 \mathrm{~s}, 1035 \mathrm{w}, 980 \mathrm{w}, 940 \mathrm{~m}, 915 \mathrm{~m}, 865 \mathrm{~m}$, $765 \mathrm{~s}, 740 \mathrm{~s}$ and $705 \mathrm{~s} ; \delta_{\mathrm{H}} 3.74(\mathrm{~d}, J 14.1, \mathrm{CH}), 3.81$ (OMe), 4.00 (d, $J 14.1, \mathrm{CH})$ and $7.15-7.50(\mathrm{~m}, 10 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}} 46.2,61.6$, $91.0,127.8,128.2,128.5,129.6,130.2,131.4,133.3,157.0$ and 185.4 (3 carbons of low intensity not showing) (Found: \mathbf{M}^{+}, 388.0167 and $386.0131 . \mathrm{C}_{19} \mathrm{H}_{15} \mathrm{BrO}_{4}$ requires $M, 388.0133$ and 386.0154). The bromide was used without further purification.

6-Benzylidene-3-methoxy-4-phenylpyran-2,5-dione 22a.-A solution of compound $21 a(420 \mathrm{mg})$ in dry benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of 1,5-diazabicyclo[5.4.0]-undec-5-ene ($178 \mathrm{~mm}^{3}, 1.1$ equiv.) in dry benzene ($150 \mathrm{~cm}^{3}$) under nitrogen. Initially a deep yellow solution was produced, which became cloudy and finally black within a few minutes. The mixture was poured onto hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $50 \mathrm{~cm}^{3}$) and then extracted with ether $\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined ether extracts were dried and evaporated to leave an oily residue which was purified by column chromatography to give the methyl grevillin ($75 \mathrm{mg}, 22 \%$), which recrystallised from heptane as yellow needles, m.p. $149-151^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 232 ($\varepsilon 9380$), 246sh ($\varepsilon 8500$), $311 \operatorname{sh}(\varepsilon 5230)$ and $320(\varepsilon 5300)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1745 \mathrm{~s}, 1670 \mathrm{~m}, 1610 \mathrm{~s}, 1460 \mathrm{w}, 1320 \mathrm{~s}, 1180 \mathrm{~s}$, 1120 m and $925 \mathrm{w} ; \delta_{\mathrm{H}} 3.93(\mathrm{OMe}), 7.05(1 \times=\mathrm{CH}), 7.22-7.52(\mathrm{~m}$, $8 \times \operatorname{aryl}=\mathrm{CH})$ and $7.78-8.00(\mathrm{~m}, 2 \times \mathrm{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 61.5,120.0$, $128.1,129.0,129.3,130.2,130.5,131.9,132.0,144.0$ and $178.0(4$ carbons of low intensity not showing) (Found: $\mathbf{M}^{+}, 306.0886$. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $M, 306.0890$).

6-Benzylidene-3-hydroxy-4-phenylpyran-2,5-dione 23.-A solution of boron tribromide in hexane ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 660 \mathrm{~mm}^{3}, 4$ equiv.) was added dropwise to a stirred solution of compound

22a (50 mg) in dry dichloromethane $\left(12 \mathrm{~cm}^{3}\right)$ which was heated under reflux in a nitrogen atmosphere. The mixture was stirred and heated under reflux for a further 30 min after which the resulting orange solution was poured onto methanol $\left(20 \mathrm{~cm}^{3}\right)$, and diluted with water $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was extracted with ether ($2 \times 30 \mathrm{~cm}^{3}$), and the combined ether extracts were dried and evaporated to leave a solid residue. Column chromatography on acetylated polyamide gave the 'free' grevillin (44 mg , 92%), which recrystallised from ethanol as yellow plates, m.p. $233-235{ }^{\circ} \mathrm{C}$ (lit., ${ }^{19} 237-238^{\circ} \mathrm{C}$), $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 201(\varepsilon 16400)$, 260 ($\varepsilon 15200$) and 345 ($\varepsilon 15300$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{~m}$, $1715 \mathrm{~s}, 1590 \mathrm{~s}, 1490 \mathrm{w}, 1445 \mathrm{w}, 1370 \mathrm{~s}, 1210 \mathrm{~s}, 995 \mathrm{~m}, 760 \mathrm{~m}, 735 \mathrm{~m}$ and $695 \mathrm{~s} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 6.98(1 \times=\mathrm{CH}), 7.30-7.60(\mathrm{~m}$, $8 \times$ aryl $=\mathrm{CH}$) and 7.85-8.00 (m, $2 \times$ aryl $=\mathrm{CH}$) (Found: C, 73.7; $\mathrm{H}, 4.2 \% ; \mathrm{M}^{+}, 292.0731$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 74.0 ; \mathrm{H}, 4.1 \%$; $M, 292.0732$).

3-(4-Methoxyphenyl)-2-trimethylsilyloxypropanenitrile

16b.- 4-Methoxyphenylacetaldehyde (2.75 g) was added dropwise onto a stirred mixture of trimethylsilyl cyanide $\left(2.45 \mathrm{~cm}^{3}, 1\right.$ equiv.) and zinc iodide (1 crystal) at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred for a further 2 h and then distilled to give the title compound $(2.71 \mathrm{~g}, 59 \%)$, as a colourless liquid, b.p. $70-75^{\circ} \mathrm{C}$ at $0.5 \mathrm{mmHg}, v_{\text {max }}$ (liquid film) $/ \mathrm{cm}^{-1}$ $2960 \mathrm{~m}, 1610 \mathrm{~m}, 1580 \mathrm{w}, 1510 \mathrm{~s}, 1460 \mathrm{w}, 1440 \mathrm{w}, 1350 \mathrm{w}, 1300 \mathrm{~m}$, $1265 \mathrm{~s}, 1180 \mathrm{~m}, 1115 \mathrm{~s}, 1035 \mathrm{~m}, 935 \mathrm{w}, 885 \mathrm{~m}, 850 \mathrm{~s}$ and $760 \mathrm{~m} ; \delta_{\mathrm{H}}$ (no solvent) 0.00 (OTMS), 2.80 (d, $J 7.0, \mathrm{CH}_{2}$), 3.52 (OMe), 4.37 (t, $J 7.0, \mathrm{CH}), 6.70(\mathrm{~d}, J 8.5,2 \times \mathrm{aryl}=\mathrm{CH})$ and $7.03(\mathrm{~d}, J 8.5$, $2 \times$ aryl $=\mathrm{CH}$).

3-Hydroxy-4-(4-methoxyphenyl)-1-phenylbutan-2-one 17b.A solution of compound $16 \mathrm{~b}(2.7 \mathrm{~g})$ in dry ether $\left(25 \mathrm{~cm}^{3}\right)$ was added dropwise to a refluxing ethereal solution $\left(20 \mathrm{~cm}^{3}\right)$ of benzylmagnesium bromide (1.5 equiv.) under nitrogen. The mixture was stirred at ambient temperature overnight and then poured onto ice-cooled dilute hydrochloride acid ($150 \mathrm{~cm}^{3}$). The layers were separated and the organic phase was washed with brine $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, dried and evaporated to leave a solid residue. Purification of the latter by column chromatography gave the title compound ($1.9 \mathrm{~g}, 65 \%$) which recrystallised from light petroleum as white crystals, m.p. $74-76^{\circ} \mathrm{C}, v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3480 \mathrm{~m}, 2910 \mathrm{~m}, 1710 \mathrm{~s}, 1610 \mathrm{~s}, 1585 \mathrm{~m}, 1440 \mathrm{~m}, 1300 \mathrm{~s}, 1275 \mathrm{~m}$, $1110 \mathrm{~m}, 1030 \mathrm{~m}$ and $910 \mathrm{w} ; \delta_{\mathrm{H}} 2.80(\mathrm{dd}, J 7.1$ and $14.2,1 \mathrm{H}), 3.10$ (dd, $J 4.9$ and $14.2,1 \mathrm{H}), 3.22(\mathrm{br}, \mathrm{OH}), 3.75\left(\mathrm{CH}_{2}\right), 3.76(\mathrm{OMe})$, $4.45(\mathrm{br}, \mathrm{m}, \mathrm{CH}), 6.82(\mathrm{~d}, J 8.8,2 \times \mathrm{aryl}=\mathrm{CH})$ and $7.00-7.35(\mathrm{~m}$, $7 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}} 39.4,45.8,55.4,77.1,114.2,127.4,128.9$, 129.6, 130.4, 130.9, 133.2, 158.8 and 209.2 (Found: C, 75.6; H, $6.9 \% ; \mathrm{M}^{+}, 270.1241 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 6.7 \% ; M$, 270.1255).

Ethyl 1-(4-Methoxyphenyl)-4-phenyl-3-oxobutan-2-yl Oxalate $\mathbf{1 8 b}$.-A solution of compound $\mathbf{1 7 b}(1.25 \mathrm{~g})$ and triethylamine ($0.62 \mathrm{~cm}^{3}$, 1 equiv.) in dry THF $\left(50 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of ethyl oxalyl chloride ($0.52 \mathrm{ml}, 1$ equiv.) in dry THF ($50 \mathrm{~cm}^{3}$), under nitrogen, whereupon a white precipitate formed immediately. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , and then poured onto hydrochloric acid (2 $\mathrm{mol} \mathrm{dm}^{-3} ; 50 \mathrm{~cm}^{3}$). The mixture was extracted with ether ($2 \times 75 \mathrm{~cm}^{3}$), and the combined ether extracts were then dried and evaporated to yield the title compound $(1.68 \mathrm{~g}, 98 \%)$ as a light yellow oil, $v_{\text {max }}$ (liquid film) $/ \mathrm{cm}^{-1} 2940 \mathrm{br} \mathrm{m}, 1740 \mathrm{br} \mathrm{s}$, $1610 \mathrm{w}, 1510 \mathrm{~m}, 1450 \mathrm{~m}, 1300 \mathrm{~m}, 1245 \mathrm{~s}, 1180 \mathrm{~s}, 1110 \mathrm{w}, 1040 \mathrm{~m}$, $825 \mathrm{~m}, 730 \mathrm{~m}$ and $695 \mathrm{~m} ; \delta_{\mathrm{H}} 1.38\left(\mathrm{t}, J 7.0 \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.08(\mathrm{~d}, J$ $\left.6.3, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{CH}_{2}\right), 3.80(\mathrm{OMe}), 4.38\left(\mathrm{q}, J 7.0, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $5.37(\mathrm{t}, J 6.3, \mathrm{CH}), 6.80(\mathrm{~d}, J 9.0,2 \times \mathrm{aryl}=\mathrm{CH})$ and $7.00-7.40(\mathrm{~m}$, $7 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}} 13.9,36.1,47.0,55.3,63.4,80.6,114.1,126.8$, 127.3, 128.7, 129.7, 130.6, 132.4, 157.0, 158.9 and 203.1 (Found: $\mathrm{M}^{+}, 370.1416 . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$ requires $M, 370.1414$).

3-Hydroxy-6-(4-methoxybenzyl)-4-phenylpyran-2,5-dione 19b.-A solution of compound $\mathbf{1 8 b}(1.65 \mathrm{~g})$ in dry DMF (50 cm^{3}) was added dropwise, over 15 min , to a stirred solution of 1,5-diazabicyclo[5.4.0] undec-5-ene ($1.30 \mathrm{~cm}^{3}, 2$ equiv.) in dry DMF ($20 \mathrm{~cm}^{3}$) at $-15{ }^{\circ} \mathrm{C}$, under nitrogen. The mixture was stirred for 2 h and then quenched by addition of dilute hydrochloric acid $\left(50 \mathrm{~cm}^{3}\right)$. The mixture was extracted with ether ($2 \times 50 \mathrm{~cm}^{3}$), and the combined ether extracts were then washed with water ($3 \times 50 \mathrm{~cm}^{3}$), dried and evaporated to leave a crude residue. Column chromatography of the latter gave the title compound ($1.06 \mathrm{~g}, 73 \%$) as a pale yellow solid which recrystallised from heptane as yellow needles, m.p. $131-132^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 226(\varepsilon 20600), 285(\varepsilon 7350)$ and $305(\varepsilon 7650)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3430 \mathrm{~m}, 3000 \mathrm{br} \mathrm{w}, 1730 \mathrm{~s}, 1675 \mathrm{~s}, 1615 \mathrm{~m}$, $1520 \mathrm{w}, 1365 \mathrm{~s}, 1185 \mathrm{w}, 1120 \mathrm{w}, 955 \mathrm{w}, 890 \mathrm{w}$ and $845 \mathrm{w} ; \delta_{\mathrm{H}} 3.34$ (d, $\left.J 4.5, \mathrm{CH}_{2}\right), 3.74(\mathrm{OMe}), 5.29(\mathrm{t}, J 4.5, \mathrm{CH}), 6.78$ (d, J 8.0, $2 \times$ aryl $=\mathrm{CH}), 7.18-7.50(\mathrm{~m}, 5 \times \mathrm{aryl}=\mathrm{CH})$ and $7.65(\mathrm{~d}, J 8.0$, $2 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 39.7,55.3,85.0,114.2,122.2,125.4,127.7$, 128.1, 129.2, 129.9, 131.2, 149.0, 159.2, 161.6 and 191.1 (Found: $\mathrm{C}, 70.4 ; \mathrm{H}, 5.2 \% ; \mathrm{M}^{+}, 324.0989 . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $\mathrm{C}, 70.4 ; \mathrm{H}$, $5.0 \% ; M, 324.0996$).

3-Methoxy-6-(4-methoxybenzyl)-4-phenylpyran-2,5-dione
20b.-An ethereal solution of diazomethane was added to a solution of compound $19 \mathrm{~b}(65 \mathrm{mg})$ in ether $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, until the solution remained pale yellow. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , and then evaporated to dryness to leave the title compound ($66 \mathrm{mg}, 97 \%$) as a viscous yellow oil, $\lambda_{\text {max }}-$ $(\mathrm{EtOH}) / \mathrm{nm} 225(\varepsilon 18000), 254(\varepsilon 5800), 283(\varepsilon 6540)$ and $294(\varepsilon$ 6050); $v_{\text {max }}$ (liquid film) $/ \mathrm{cm}^{-1} 3400 \mathrm{br} \mathrm{w}, 2950 \mathrm{br} \mathrm{m}, 1730 \mathrm{~s}, 1675 \mathrm{~s}$, $1610 \mathrm{~s}, 1600 \mathrm{~s}, 1510 \mathrm{~s}, 1445 \mathrm{~s}, 1365 \mathrm{~s}, 1300 \mathrm{~s}, 1250 \mathrm{~s}, 1205 \mathrm{~s}, 1175 \mathrm{~s}$, $1145 \mathrm{~s}, 1110 \mathrm{~m}, 1060 \mathrm{~m}, 1035 \mathrm{~s}, 965 \mathrm{w}, 845 \mathrm{~m}, 765 \mathrm{~m}$ and $695 \mathrm{~m} ; \delta_{\mathrm{H}}$ $3.26\left(\mathrm{~d}, J 4.0, \mathrm{CH}_{2}\right), 3.52(\mathrm{OMe}), 3.73(\mathrm{OMe}), 5.18(\mathrm{t}, J 4.0, \mathrm{CH})$, $6.78(\mathrm{~d}, J 8.0,2 \times \mathrm{aryl}=\mathrm{CH}), 7.04(\mathrm{~d}, J 8.0,2 \times \mathrm{aryl}=\mathrm{CH})$ and 6.93-7.40 (m, $5 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 40.0,55.3,61.3,83.7,114.1$, $125.9,127.9,128.0,128.5,129.1,129.5,130.0,131.4,159.1$ and 192.8 (Found: $\mathrm{M}^{+}, 338.1136 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $M, 338.1155$).

6-Bromo-3-methoxy-6-(4-methoxybenzyl)-4-phenylpyran-2,5dione 21b.-A solution of bromine in acetic acid ($1 \% \mathrm{v} / \mathrm{v}$ solution; $0.81 \mathrm{~cm}^{3}, 1$ equiv.) was added dropwise over 15 min to a stirred solution of compound $\mathbf{2 0 b}$ (54 mg) in acetic acid (2 cm^{3}), under nitrogen. The mixture was stirred at ambient temperature for 2 h and then diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined ether extracts were washed with water ($3 \times 20 \mathrm{~cm}^{3}$), dried and evaporated to give the title compound ($36 \mathrm{mg}, 54 \%$) as a very unstable yellow oil, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2950$ br m, 1765s, $1695 \mathrm{~s}, 1615 \mathrm{~s}, 1605 \mathrm{~s}$, $1495 \mathrm{~m}, 1450 \mathrm{~m}, 1350 \mathrm{~s}, 1310 \mathrm{~s}, 1135 \mathrm{~s}, 1035 \mathrm{~m} 990 \mathrm{w}, 940 \mathrm{w}, 875 \mathrm{w}$ and $850 \mathrm{w} ; \delta_{\mathrm{H}} 3.75(\mathrm{OMe}), 3.82(\mathrm{OMe}), 3.40-3.75\left(\mathrm{~m}, \mathrm{CH}_{2}\right), 6.80$ $(\mathrm{d}, J 8.7,2 \times$ aryl $=\mathrm{CH})$ and $7.10-7.55(\mathrm{~m}, 7 \times$ aryl $=\mathrm{CH})$. The bromide was used without further purification.

3-Methoxy-6-(4-methoxybenzylidene)-4-phenylpyran-2,5-

 dione $\mathbf{2 2 b}$.-A solution of compound $21 \mathrm{~b}(98 \mathrm{mg})$ in dry benzene ($10 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of $1,5-$ diazabicyclo[5.4.0]undec-5-ene ($35 \mathrm{~mm}^{3}, 1$ equiv.) in dry benzene ($60 \mathrm{~cm}^{3}$) under nitrogen. After 45 min the mixture was poured onto dilute hydrochloric acid $\left(25 \mathrm{~cm}^{3}\right)$ and extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined ether extracts were dried and evaporated to leave an oily residue which was purified by column chromatography to give the title compound (15 $\mathrm{mg}, 20 \%$), which recrystallised from methanol as yellow needles, m.p. $162-163^{\circ} \mathrm{C}, \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 234$ ($\varepsilon 8610$), 267 ($\varepsilon 10850$) and $402(\varepsilon 8080)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 2940 \mathrm{w}, 1740 \mathrm{~s}, 1665 \mathrm{w}, 1590 \mathrm{~s}$, $1510 \mathrm{w}, 1365 \mathrm{~m}, 1315 \mathrm{~m}, 1165 \mathrm{~s}, 1110 \mathrm{w}, 1030 \mathrm{w}$ and $915 \mathrm{w} ; \delta_{\mathrm{H}} 3.86$ (OMe), 3.93 (OMe), $6.96(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.04$ $(1 \times=\mathrm{CH}), \quad 7.41 \quad(5 \times$ aryl $=\mathrm{CH})$ and $7.90(\mathrm{~d}, \quad J \quad 8.9$,$2 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 55.4 ; 61.4,114.6,120.3,124.8,128.1,129.1$, $129.2,130.2,133.7,134.1,142.9,151.4,155.4,161.6$ and 177.6 (Found: $\mathrm{M}^{+}, 336.1005 . \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $M, 336.0998$).

3-Hydroxy-6-(4-hydroxybenzylidene)-4-phenylpyran-2,5dione 24.-A solution of boron tribromide in hexane $(1 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 255 \mathrm{~mm}^{3}, 5$ equiv.) was added dropwise to a stirred solution of compound $22(14 \mathrm{mg})$ in dry dichloromethane (10 cm^{3}) which was heated under reflux in a nitrogen atmosphere. The mixture was stirred and heated under reflux for a further 4 h after which concentrated hydrochloric acid ${ }^{10}\left(3 \mathrm{~cm}^{3}\right)$ was added to it and the mixture was stirred vigorously for an additional 1 h . The mixture was poured onto water $\left(15 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined ethyl acetate extracts were washed successively with water $\left(30 \mathrm{~cm}^{3}\right)$, saturated aqueous mannitol ($30 \mathrm{~cm}^{3}$) and water ($30 \mathrm{~cm}^{3}$) and then dried and evaporated to leave a solid residue. Purification of this by column chromatography on acetylated polyamide gave the 'free' grevillin ($5.4 \mathrm{mg}, 42 \%$), which recrystallised from ethanol as yellow-orange crystals, m.p. $240-248^{\circ} \mathrm{C}$ (decomp.), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 264(\varepsilon 13400), 283(\varepsilon 12700)$ and $400(\varepsilon 11700) ;$ $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{br} \mathrm{s}, 1640 \mathrm{~m}, 1575 \mathrm{~s}, 1515 \mathrm{~m}, 1450 \mathrm{w}, 1380 \mathrm{~s}$, $1345 \mathrm{~m}, 1245 \mathrm{~m}, 1210 \mathrm{~s}, 1175 \mathrm{~s}, 1005 \mathrm{w}, 845 \mathrm{w}, 770 \mathrm{w}, 740 \mathrm{w}$, and $700 \mathrm{w} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.98(\mathrm{~d}, J 8.7,2 \times$ aryl $=\mathrm{CH}), 7.01$ $(1 \times=\mathrm{CH}), 7.30-7.48(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH}), 7.50-7.60(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})$ and $7.88(\mathrm{~d}, J 8.7,2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $)$ $116.8,119.4,124.9,125.7,128.4,129.2,131.3,134.7,144.1,150.0$, $158.3,160.4$ and 177.5 (Found: M^{+}, 308.0676. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $M, 308.0683$).

3,6-Dihydroxy-2,5-diphenyl-1,4-benzoquinone (Polyporic

 Acid) 4a.-A solution of compound $23(50 \mathrm{mg})$ in dry ethanol $\left(5 \mathrm{~cm}^{3}\right)$ was treated with sodium ethoxide $\left(0.17 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution; $1 \mathrm{~cm}^{3}$, 1 equiv.). ${ }^{11}$ A deep purple precipitate formed immediately and the mixture was stirred, at room temperature, under nitrogen for 30 min . The reaction was acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 5 \mathrm{~cm}^{3}$) and extracted with ether ($2 \times 20 \mathrm{~cm}^{3}$). The ether extracts were dried and evaporated to give polyporic acid ($45 \mathrm{mg}, 90 \%$), which recrystallised from acetone as dark brown needles, m.p. $300-301{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} 303-$ $\left.305^{\circ} \mathrm{C}\right) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 262(\varepsilon 21300), 325(\varepsilon 5330)$ and $475(\varepsilon$ $254) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{~s}, 1610 \mathrm{~s}, 1595 \mathrm{sh} \mathrm{s}, 1325 \mathrm{~s}, 1310 \mathrm{~s}$, $1250 \mathrm{~s}, 1000 \mathrm{~s}, 770 \mathrm{~m}, 725 \mathrm{~m}$ and $695 \mathrm{~m}, \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 7.38$ $(10 \times$ aryl $=\mathrm{CH})$ (Found: $\mathrm{M}^{+}, 292.0721 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $M, 292.0732$). The sample was identical with a specimen synthesised by the alternative route described by Shildneck and Adams. ${ }^{13,20}$6-(4-Benzyloxybenzylidene)-3-hydroxy-4-phenylpyran-2,5-
dione 25c.-The grevillin which was prepared in 64% yield according to the method described by Steglich, ${ }^{10}$ had m.p. 246$248{ }^{\circ} \mathrm{C}$ (lit., ${ }^{10}$ m.p. $247-249^{\circ} \mathrm{C}$), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 238 \mathrm{sh}(\varepsilon$ $11350), 256(\varepsilon 12560), 285 \operatorname{sh}(\varepsilon 9150), 362 \operatorname{sh}(\varepsilon 13110)$ and 383 ($\varepsilon 14350$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{~m}, 1720 \mathrm{~s}, 1640 \mathrm{w}, 1580 \mathrm{~s}, 1500 \mathrm{~m}$, $1375 \mathrm{~s}, 1250 \mathrm{~s}, 1200 \mathrm{~s}, 1170 \mathrm{~s}, 995 \mathrm{~m}, 830 \mathrm{~m}, 730 \mathrm{~m}$ and 695 m ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 5.21\left(\mathrm{CH}_{2}\right), 6.99(1 \times=\mathrm{CH}), 7.17(\mathrm{~d}, J 8.8$, $2 \times \operatorname{aryl}=\mathrm{CH}), 7.30-7.60(\mathrm{~m}, 10 \times \operatorname{aryl}=\mathrm{CH})$ and $7.93(\mathrm{~d}, J 8.8$, $2 \times$ aryl $=\mathrm{CH}$) (Found: C, $75.5 ; \mathrm{H}, 4.6 \% ; \mathrm{M}^{+}, 398.1148$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{5}: \mathrm{C}, 75.4 ; \mathrm{H}, 4.6 \% ; M, 398.1149$).

3,6-Dihydroxy-2-(4-methoxyphenyl)-5-phenyl-1,4-benzo-

 quinone $\mathbf{4 b}$.-A suspension of compound $\mathbf{2 5 b}(50 \mathrm{mg})$ in dry methanol ($3 \mathrm{~cm}^{3}$) was treated with sodium methoxide (2.6 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ solution; $1.6 \mathrm{~cm}^{3}, 2.6$ equiv.), whereupon a deep purple precipitate formed almost immediately. The mixture was stirred for 30 min under nitrogen and then acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 5 \mathrm{~cm}^{3}$). The green precipitate which formed was collected by vacuum filtration to give theterphenylquinone ($41 \mathrm{mg}, 82 \%$), which recrystallised from ethanol as greenish black microcrystalline square plates, m.p. 272-274 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ m.p. $280^{\circ} \mathrm{C}$), $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 267(\varepsilon 22520)$, $350(\varepsilon 3513), 497(\varepsilon 500) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320 \mathrm{~s}, 1615 \mathrm{~s}, 1515 \mathrm{~m}$, $1450 \mathrm{w}, 1330 \mathrm{~s}, 1315 \mathrm{~s}, 1260 \mathrm{~s}, 1190 \mathrm{~m}, 1040 \mathrm{~m}, 1005 \mathrm{~s}, 845 \mathrm{~m}, 810 \mathrm{~m}$, $775 \mathrm{~m}, 735 \mathrm{~m}$ and $705 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $3.79(\mathrm{OMe}), 6.97(\mathrm{~d}$, $J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.35(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH})$ and 7.30 7.40 (m, $5 \times$ aryl $=\mathrm{CH}$) (Found: M^{+}, 322.0844. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $M, 322.0840$).

3-Methoxy-6-(4-hydroxybenzylidene)-4-phenylpyran-2,5dione $\mathbf{2 5 b}$.- A solution of boron tribromide in hexane $(1 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 67 \mathrm{~mm}^{3}, 5$ equiv.) was added dropwise to a stirred solution of compound $\mathbf{2 2 b}$ (4.5 mg) in dry dichloromethane (5 cm^{3}), which was heated under reflux in a nitrogen atmosphere. The mixture was stirred and heated under reflux for a further 30 min after which concentrated hydrochloric acid $\left(1 \mathrm{~cm}^{3}\right)$ was added, and the mixture was stirred vigorously for an additional 30 min . The mixture was poured onto water $\left(10 \mathrm{~cm}^{3}\right)$ and then extracted with ethyl acetate $\left(2 \times 20 \mathrm{~cm}^{3}\right)$. The combined ethyl acetate extracts were washed successively with water $\left(20 \mathrm{~cm}^{3}\right)$, saturated aqueous mannitol ($20 \mathrm{~cm}^{3}$) and water ($20 \mathrm{~cm}^{3}$) and then dried and evaporated to leave a solid residue. Purification of the latter by column chromatography on acetylated polyamide gave the 'free' grevillin ($2 \mathrm{mg}, 46 \%$), which recrystallised from methanol as orange crystals, m.p. $216-218^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 244 \mathrm{sh}(\varepsilon 13500), 260(\varepsilon 16800)$, 280sh (ε 13600) and 387 ($\varepsilon 13900$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320 \mathrm{~m}, 1725 \mathrm{~s}$, $1655 \mathrm{~m}, 1590 \mathrm{~s}, 1515 \mathrm{~m}, 1430 \mathrm{w}, 1380 \mathrm{~s}, 1310 \mathrm{~s}, 1265 \mathrm{~s}, 1210 \mathrm{~s}, 1185 \mathrm{~s}$, $1100 \mathrm{w}, 1035 \mathrm{~m}, 1015 \mathrm{w}, 840 \mathrm{~m}, 760 \mathrm{~m}$ and $705 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone) $3.89(\mathrm{OMe}), 7.03(1 \times=\mathrm{CH}), 7.07(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.30-7.60(\mathrm{~m}, 5 \times$ aryl $=\mathrm{CH})$ and $7.94(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $55.8,115.3,119.0,125.6,125.8,128.4$, $129.2,130.9,131.3,134.3,144.3,150.1,158.2,162.2$ and 177.5 (Found: $\mathrm{M}^{+}, 322.0846 . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}$ requires $M 322.0841$).

2-(4-Benzyloxyphenyl)-3,6-dihydroxy-5-phenyl-1,4-benzo-

 quinone $4 \mathrm{c} .-\mathrm{A}$ solution of compound $25 \mathrm{c}(97 \mathrm{mg})$ in dry ethanol ($3 \mathrm{~cm}^{3}$) was treated with sodium ethoxide (2.6 mol dm^{-3} solution; $2 \mathrm{ml}, 2$ equiv.). A deep purple precipitate formed immediately and the mixture was stirred, at room temperature, under nitrogen for 30 min . The reaction was acidified with hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}^{-3} ; 5 \mathrm{~cm}^{3}$) to give a green precipitate, which was collected by vacuum filtration and dried to give the terphenylquinone ($89 \mathrm{mg}, 92 \%$), which recrystallised from ethanol as black plates, m.p. 268-270 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ m.p. $\left.278{ }^{\circ} \mathrm{C}\right), \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 270(\varepsilon 49000), 349(\varepsilon 3710)$ and $494(\varepsilon$ $340)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300 \mathrm{~s}, 1605 \mathrm{br} \mathrm{s}, 1510 \mathrm{~m}, 1320 \mathrm{~s}, 1250 \mathrm{~s}$, $1180 \mathrm{~m}, 995 \mathrm{~s}, 835 \mathrm{w}, 800 \mathrm{w}, 765 \mathrm{w}, 720 \mathrm{w}$ and $695 \mathrm{w} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) $5.15\left(\mathrm{CH}_{2}\right), 7.04(\mathrm{~d}, J 9.0,2 \times \mathrm{aryl}=\mathrm{CH})$ and $7.25-7.55$ $(\mathrm{m}, 12 \times \operatorname{aryl}=\mathrm{CH})$ (Found: C, $75.7 ; \mathrm{H}, 4.8 \% ; \mathrm{M}^{+}, 98.1145$. Calc. for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{O}_{5}$: C, $75.4 ; \mathrm{H}, 4.6 \% ; M, 398.1149$).5-Hydroxy-3-(4-hydroxyphenyl)-4,7-diphenylbenzofuran-2,6dione (Xylerythrin) 29a.-A solution of polyporic acid 4a (50 mg) and 4-hydroxyphenylacetic acid (26 mg) in acetic anhydride ($1 \mathrm{~cm}^{3}$), containing an excess of sodium acetate (5 equiv.) was heated under reflux for 3 h . The acetic anhydride was decomposed by the addition of water $\left(1 \mathrm{~cm}^{3}\right)$ after which a mixture of 48% hydrogen bromide $\left(1 \mathrm{~cm}^{3}\right)$ and acetic acid (1 cm^{3}) was added. The mixture was heated under reflux for 0.5 h and then cooled to room temperature and diluted with water $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was extracted with chloroform (3×15 cm^{3}), and the combined chloroform extracts were then dried and evaporated to leave a solid residue. Purification by column chromatography gave xylerythrin ($27 \mathrm{mg}, 39 \%$), as black crystals with a green lustre, m.p. $263-267^{\circ} \mathrm{C}\left(\mathrm{CHCl}_{3}\right)$ (lit., ${ }^{14}$ m.p. $265-268^{\circ} \mathrm{C}$, lit., ${ }^{21}$ m.p. $\left.253-255^{\circ} \mathrm{C}\right), \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 254$
($\varepsilon 26600$), $359(\varepsilon 9300)$ and $465(\varepsilon 14050) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3600-3100 \mathrm{br} \mathrm{m}, 1770 \mathrm{~m}, 1740 \mathrm{w}, 1615 \mathrm{~m}, 1600 \mathrm{~s}, 1500 \mathrm{w}, 1400 \mathrm{~m}$, $1325 \mathrm{~m}, 1270 \mathrm{~m}, 1150 \mathrm{~m}, 1015 \mathrm{~m}, 835 \mathrm{w}, 750 \mathrm{~m}$ and $695 \mathrm{~m} ; \delta_{\mathrm{H}^{-}}$ ($\left[^{2} \mathrm{H}_{6}\right]$ acetone) 6.49 (d, $J 8.9,2 \times$ aryl $\left.=\mathrm{CH}\right), 6.96(\mathrm{~d}, J 8.9$, $2 \times$ aryl $=\mathrm{CH}), 7.05-7.15(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH}), 7.15-7.30(\mathrm{~m}$, $2 \times$ aryl $=\mathrm{CH}), 7.40-7.55(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH})$ and $7.60-7.70$ $(\mathrm{m}, 2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathbf{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 115.0,115.3,121.0$, $128.3,128.4,128.8,129.3,130.6,130.8,131.2,131.5,132.6,132.8$, 133.7, 137.8, 148.5, 158.5, 159.6, 168.2 and 181.4 (Found: M^{+}, 408.1006. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{5}$ requires $M, 408.0993$). Identical spectral data were recorded for an authentic sample of natural xylerythrin. ${ }^{14}$

5-Hydroxy-3,4-bis(-hydroxyphenyl)-7-phenylbenzofuran-2,6dione (Peniophorin) 29b and 5-Hydroxy-3,7-bis(4-hydroxyphen-yl)-4-phenylbenzofuran-2,6-dione (Isopeniophorin) 29c.-A solution of compound $4 \mathrm{c}(40 \mathrm{mg})$ and 4-hydroxyphenylacetic acid (1 equiv.) in acetic anhydride ($1 \mathrm{~cm}^{3}$), containing an excess of sodium acetate (5.25 equiv.) was heated under reflux for 3 h . The acetic acid was decomposed by the addition of water $\left(1 \mathrm{~cm}^{3}\right)$, and then a mixture of 48% hydrogen bromide $\left(1 \mathrm{~cm}^{3}\right)$ and acetic acid $\left(1 \mathrm{~cm}^{3}\right)$. The mixture was heated under reflux for 0.5 h and then cooled to room temperature and diluted with water (15 cm^{3}). The mixture was extracted with chloroform ($2 \times 15 \mathrm{~cm}^{3}$), and the combined organic extracts were then dried, and evaporated to give a solid residue containing both isopeniophorin and peniophorin. The isomers were separated by column chromatography to give: (i) isopeniophorin (eluted first) $(9 \mathrm{mg}$, 22%), m.p. $298-307{ }^{\circ} \mathrm{C}$ (decomp.), ($\left.\mathrm{CHCl}_{3}-\mathrm{AcOEt}\right) ; \lambda_{\text {max }}-$ (EtOH)/nm $263(\varepsilon 20000), 302$ sh ($\varepsilon 8600$), 400sh ($\varepsilon 4400$) and $470(\varepsilon 9500) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3470 \mathrm{~s}, 3330 \mathrm{~s}, 2930 \mathrm{w}, 1765 \mathrm{~s}, 1600 \mathrm{~s}$, $1595 \mathrm{~s}, 1505 \mathrm{w}, 1405 \mathrm{~m}, 1330 \mathrm{~s}, 1280 \mathrm{~m}, 1225 \mathrm{~m}, 1180 \mathrm{~m}, 1150 \mathrm{~m}$, $1030 \mathrm{~m}, 845 \mathrm{w}$ and $700 \mathrm{w} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.50(\mathrm{~d}, J 8.6$, $2 \times$ aryl $=\mathrm{CH}), 6.90-7.00(\mathrm{~m}, 4 \times$ aryl $=\mathrm{CH}), 7.05-7.15(\mathrm{~m}$, $3 \times$ aryl $=\mathrm{CH}), 7.17-7.25(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})$ and $7.53(\mathrm{~d}, J 8.7$, $2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 115.2,115.7,121.1,121.5$, $128.2,128.3,128.8,129.2,130.8,131.6,132.5,132.7,133.0,138.1$, $148.5,157.8,158.5,168.5$ and 181.8 (Found: $\mathbf{M}^{+}, 424.0959$. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $M, 424.0942$) and (ii) peniophorin (eluted second) ($4.5 \mathrm{mg}, 11 \%$), m.p. $287-293{ }^{\circ} \mathrm{C}$ (decomp.) $\left(\mathrm{CHCl}_{3}\right)$ [lit., ${ }^{22}$ m.p. $300-305^{\circ} \mathrm{C}$ (decomp.)]; $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 268(\varepsilon$ $23400), 302 \operatorname{sh}(\varepsilon 7980), 389 \operatorname{sh}(\varepsilon 6500), 410 \operatorname{sh}(\varepsilon 7100)$ and $468(\varepsilon$ $8780)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3550 \mathrm{~m}, 3300 \mathrm{~m}, 1775 \mathrm{~s}, 1695 \mathrm{~m}, 1625 \mathrm{~s}$, $1600 \mathrm{~s}, 1400 \mathrm{w}, 1330 \mathrm{~m}, 1100 \mathrm{w}, 1010 \mathrm{w}, 980 \mathrm{w}, 890 \mathrm{w}$ and 830 w ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.56(\mathrm{~d}, J 8.8,2 \times$ aryl $=\mathrm{CH}), 6.58(\mathrm{~d}, J 8.7$, $2 \times \operatorname{aryl}=\mathrm{CH}), 7.01(\mathrm{~d}, J 8.8,2 \times$ aryl $=\mathrm{CH}), 7.06(\mathrm{~d}, J 8.7$, $2 \times$ aryl $=\mathrm{CH}), 7.45-7.55(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH})$ and $7.60-7.68$ (m, $2 \times$ aryl $=\mathrm{CH}) ; \quad \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone 115.2, 121.1, 123.4, $128.3,128.8,129.3,130.0,130.4,130.7,131.1,131.5,132.0,132.7$, 133.0, 138.1, 148.1, 157.9, 159.6 and 168.3 (Found: $\mathrm{M}^{+}, 424.0958$. $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $M, 424.0942$). Identical spectral data were recorded for an authentic sample of natural peniophorin. ${ }^{22}$

3-(4-Aminophenyl)-5-hydroxy-4,7-diphenylbenzofuran-2,6dione 29d.-A solution of polyporic acid (50 mg) and 4-aminophenylacetic acid (1.2 equiv.) in acetic anhydride $\left(1 \mathrm{~cm}^{3}\right)$ containing an excess of sodium acetate (5 equiv.) was heated under reflux for 3 h . The acetic anhydride was decomposed by addition of water $\left(1 \mathrm{~cm}^{3}\right)$, and then a mixture of 48% hydrobromic acid $\left(1 \mathrm{~cm}^{3}\right)$ and acetic acid $\left(1 \mathrm{~cm}^{3}\right)$ was added. The mixture was heated under reflux for 0.5 h and then cooled to room temperature and diluted with water $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was extracted with chloroform $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, and the combined organic extracts were then dried and evaporated to leave the aminoxylerythrin ($6 \mathrm{mg}, 10 \%$), which recrystallised from chloroform as blue crystals, m.p. 233-240 ${ }^{\circ} \mathrm{C}$ (decomp.); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 252 \operatorname{sh}(\varepsilon 18300), 258(\varepsilon 18500), 359(\varepsilon 6410)$ and $561(\varepsilon 6940) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{br} \mathrm{s}, 1780 \mathrm{~m}, 1625 \mathrm{~s}, 1605 \mathrm{~s}$,
$1515 \mathrm{~m}, 1450 \mathrm{w}, 1415 \mathrm{~m}, 1340 \mathrm{~m}, 1315 \mathrm{~m}, 1195 \mathrm{w}, 1165 \mathrm{~m}, 1030 \mathrm{~m}$, $900 \mathrm{w}, 840 \mathrm{w}, 815 \mathrm{w}, 765 \mathrm{w}, 705 \mathrm{~m}$ and $625 \mathrm{w} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $)$ $6.30(\mathrm{~d}, J 8.8,2 \times \operatorname{aryl}=\mathrm{CH}), 6.90(\mathrm{~d}, J 8.8,2 \times \operatorname{aryl}=\mathrm{CH}), 7.15-$ $7.25(\mathrm{~m}, 3 \times \mathrm{aryl}=\mathrm{CH}), 7.25-7.35(\mathrm{~m}, 2 \times \mathrm{aryl}=\mathrm{CH}), 7.40-7.55$ $(\mathrm{m}, 3 \times \operatorname{aryl}=\mathrm{CH})$ and $7.60-7.70(\mathrm{~m}, 2 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ acetone) 113.6, 117.8, 119.5, 128.3, 128.5, 128.8, 129.2, 130.8, $131.5,131.8,133.2,134.8,138.0,148.2,151.4,168.4$ and 181.3 (2 carbons low intensity not showing) (Found: $\mathbf{M}^{+}, 407.1149$. $\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $M, 407.1155$).

5-Hydroxy-3,4,7-triphenylbenzofuran-2,6-dione(Deoxyxylerythrin) 29e-A solution of polyporic acid (50 mg) and phenylacetic acid (1 equiv.) in acetic anhydride ($1 \mathrm{~cm}^{3}$) containing an excess of sodium acetate (5 equiv.) was heated under reflux for 3 h. The acetic anhydride was decomposed by addition of water (1 cm^{3}), and then a mixture of 48% hydrobromic acid $\left(1 \mathrm{~cm}^{3}\right)$ and acetic acid $\left(1 \mathrm{~cm}^{3}\right)$ was added. The mixture was heated under reflux for 0.5 h , cooled to room temperature and then diluted with water $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was extracted with chloroform ($2 \times 15 \mathrm{~cm}^{3}$) and the combined organic extracts were then dried and evaporated to leave a solid residue.

Purification by column chromatography gave the deoxyxylerythrin ($13 \mathrm{mg}, 20 \%$) as red crystals, m.p. $215-220^{\circ} \mathrm{C}$ (decomp.) $\left(\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 251$ (20700), 282sh, 391 sh , 396 ($\varepsilon 12700$) and $476(\varepsilon 1110) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3600-3200 \mathrm{br} \mathrm{s}$, $1775 \mathrm{~s}, 1630 \mathrm{~s}, 1610 \mathrm{~s}, 1445 \mathrm{w}, 1410 \mathrm{w}, 1335 \mathrm{~m}, 1310 \mathrm{~m}, 1200 \mathrm{w}$, $1150 \mathrm{w}, 1025 \mathrm{w}, 935 \mathrm{w}, 785 \mathrm{w}, 755 \mathrm{~m}$ and $700 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $)$ $7.00-7.10(\mathrm{~m}, 5 \times$ aryl $=\mathrm{CH}), 7.10-7.40(\mathrm{~m}, 5 \times$ aryl $=\mathrm{CH}), 7.45-$ $7.60(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH})$ and $7.60-7.70(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})$; $\delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $) 114.9,115.4,126.2,128.1,128.3,128.4,128.9$, 129.4, 129.6, 130.7, 130.8, 131.5, 140.4, 148.8, 158.3, 167.8 and 181.6 (Found: $\mathrm{M}^{+}, 392.1031 . \mathrm{C}_{26} \mathrm{H}_{16} \mathrm{O}_{4}$ requires $M, 392.1044$).

3,6-Diphenylfuro[3,2-b]furan-2,5-dione (Pulvinic Anhydride) 30a.-A solution of polyporic acid (50 mg) in dimethyl sulphoxide ($2 \mathrm{~cm}^{3}$) and acetic anhydride ($1 \mathrm{~cm}^{3}$) was warmed to $100^{\circ} \mathrm{C}$ in a nitrogen atmosphere for $15 \mathrm{~min} .{ }^{15}$ The cooled mixture was diluted with water ($10 \mathrm{~cm}^{3}$), and then extracted with chloroform $\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The combined chloroform extracts were washed successively with brine $\left(2 \times 30 \mathrm{~cm}^{3}\right)$ and saturated aqueous sodium hydrogencarbonate ($20 \mathrm{~cm}^{3}$) and then dried and evaporated to leave the dilactone ($44 \mathrm{mg}, 89 \%$), which recrystallised from chloroform as yellow microcrystalline plates, m.p. $226-228^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ m.p. $221-222{ }^{\circ} \mathrm{C}$); $\lambda_{\max }(\mathrm{EtOH}) /$ nm 233 (ε 9600), 288sh ($\varepsilon 6170$) and 373 ($\varepsilon 10200$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1820 \mathrm{~s}, 1795 \mathrm{sh} \mathrm{s}, 1660 \mathrm{~s}, 1495 \mathrm{~m}, 1450 \mathrm{~m}, 1365 \mathrm{~s}, 1340 \mathrm{~s}$, $1320 \mathrm{~m}, 1195 \mathrm{w}, 1165 \mathrm{~m}, 1055 \mathrm{~m}, 1005 \mathrm{w}, 920 \mathrm{w}, 875 \mathrm{~s}, 800 \mathrm{~s}, 780 \mathrm{~s}$, $730 \mathrm{~m}, 690 \mathrm{~s}$, and $660 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 7.10-7.40(\mathrm{~m}, 8 \times$ $\operatorname{aryl}=\mathrm{CH})$ and $8.12(\mathrm{dd}, J 8.4$ and $1.2,2 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) $95.0,117.5,121.1,125.2,126.8,127.1,127.8,130.0,132.3$, 135.8, 152.3, 166.9, 168.3 and 170.6 (Found: C, 74.1; H, 3.6\%; $M^{+}, 290.0564$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{O}_{4}: \mathrm{C}, 74.5 ; \mathrm{H}, 3.5 \% ; M$, 290.0579).
(E)-4-Hydroxy-5-(α-methoxycarbonylbenzylidene)-3-phenyl-furan-2-(5H)-one (Vulpinic Acid) 31a.-Aqueous sodium hydroxide ($18 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.9 \mathrm{~cm}^{3}$) was added to a suspension of pulvinic anhydride (1.7 g) in methanol ($25 \mathrm{~cm}^{3}$), and after 5 min the resulting clear solution was diluted with water $\left(25 \mathrm{~cm}^{3}\right)$ and acidified with concentrated hydrochloric acid. The precipitate was filtered off, and then placed under high vacuum for several hours to leave vulpinic acid ($1.79 \mathrm{~g}, 95 \%$) as a solid which recrystallised from methanol as yellow square plates, m.p. 150$151^{\circ} \mathrm{C}$ (lit., ${ }^{23}$ m.p. $148{ }^{\circ} \mathrm{C}$); $\hat{\lambda}_{\max }(\mathrm{EtOH}) / \mathrm{nm} 234$ ($\varepsilon 11986$), 276 ($\varepsilon 10318$), 366 ($\varepsilon 11106$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3000 \mathrm{br} w$, $2640 \mathrm{br} \mathrm{w}, 1780 \mathrm{~s}, 1680 \mathrm{~m}, 1615 \mathrm{~s}, 1605 \mathrm{~s}, 1435 \mathrm{~m}, 1315 \mathrm{~s}, 1280 \mathrm{~s}$, $1065 \mathrm{~m}, 965 \mathrm{~m}$ and $905 \mathrm{~m} ; \delta_{\mathrm{H}} 3.86\left(\mathrm{CO}_{2} \mathrm{Me}\right), 7.20-7.60(\mathrm{~m}$, $8 \times \operatorname{aryl}=\mathrm{CH}), 8.10-8.30(\mathrm{~m}, 2 \times \operatorname{aryl}=\mathrm{CH})$ and $13.87(\mathrm{OH}) ; \delta_{\mathrm{C}}$
54.5, 105.2, 115.8, 127.9, 128.1, 128.3, 128.4, 128.6, 128.9, 129.9, 131.9, 154.9, 160.2, 165.9 and 171.7 (Found: C, $70.8 ; \mathbf{H}, 4.3 \% ;$ M $^{+}$, 322.0832. Calc. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 70.8 ; \mathrm{H}, 4.4 \% ; M, 322.0839$).
(E)-4-Methoxy-5(- α-methoxycarbonylbenzylidene)-3-phenyl-furan-2(5H)-one (Permethylated Pulvinic Acid) 32a.-An ethereal solution of diazomethane was added to a suspension of vulpinic acid (1.7 g) in ether $\left(85 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, until the solution remained pale yellow. The solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h after which it was evaporated to leave permethylated pulvinic acid $(1.52 \mathrm{~g}, 86 \%)$, as a solid which recrystallised from methanol as cream rods, m.p. $140-141{ }^{\circ} \mathrm{C}$ (lit., ${ }^{24}$ m.p. $142-143{ }^{\circ} \mathrm{C}$), $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 224$ (ε 7940), 233 ($\varepsilon 11613$) and $331(\varepsilon$ $22129) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3000$ br w, $1770 \mathrm{~s}, 1730 \mathrm{~s}, 1630 \mathrm{~s}$, $1600 \mathrm{~m}, 1490 \mathrm{w}, 1440 \mathrm{w}, 1370 \mathrm{~m}, 1325 \mathrm{~m}, 1300 \mathrm{~m}, 1160 \mathrm{~m}, 1130 \mathrm{w}$, $1030 \mathrm{w}, 980 \mathrm{~m}, 930 \mathrm{~m} ; \delta_{\mathrm{H}} 3.74\left(\mathrm{CO}_{2} \mathrm{Me}\right), 3.85(\mathrm{OMe}), 7.25-7.50$ $(\mathrm{m}, 8 \times \operatorname{aryl}=\mathrm{CH})$ and $7.59-7.75(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH}) ; \delta_{\mathrm{C}} 52.8$, $61.3,108.2,116.4,128.4,128.5,128.8,129.0,129.1,129.4,130.0$, 131.0, 141.4, 162.6, 167.1 and 167.8 (Found: C, 71.3; H, 4.8\%; $\mathrm{M}^{+}, 336.1001$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{5}: \mathrm{C}, 71.4 ; \mathrm{H}, 4.8 \% ; M$, 336.0996).
(E)-5-(α-Carboxybenzylidene)-4-hydroxy-3-phenylfuran$2(5 \mathrm{H})$-one (Pulvinic Acid) 5a.-A deuteriochloroform solution of permethylated pulvinic acid (32 mg) was treated with iodotrimethylsilane ($68 \mathrm{~cm}^{3}, 5$ equiv.) ${ }^{5}$ in a ${ }^{1} \mathrm{H}$ NMR tube, sealed under nitrogen and warmed at $55^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, following the disappearance of the methyl group signals, with concomitant formation of methyl iodide. After 3 d the persilylated pulvinic acid was hydrolysed with methanol $\left(6 \mathrm{~cm}^{3}\right)$, and the mixture was then evaporated to give the crude product. Column chromatography gave the pulvinic acid ($18 \mathrm{mg}, 61 \%$), which recrystallised from chloroform as orange elongated plates, m.p. 202-208 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{25}$ m.p. $202-207^{\circ} \mathrm{C}$, lit., ${ }^{26} \mathrm{~m}$. p. $\left.216-217^{\circ} \mathrm{C}\right), \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 241$ ($\varepsilon 13127$), 253 ($\varepsilon 12596$) and $362(\varepsilon 12152) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3450 \mathrm{~m}, 3000 \mathrm{br} w, 2500 \mathrm{br} \mathrm{w}, 1750 \mathrm{~s}, 1680 \mathrm{~m}, 1620 \mathrm{~s}, 1595 \mathrm{~s}, 1500 \mathrm{w}$, $1450 \mathrm{~m}, 1375 \mathrm{~m}, 1305 \mathrm{w}, 1270 \mathrm{w}, 1230 \mathrm{w}, 1170 \mathrm{w}, 1080 \mathrm{w}, 1065 \mathrm{w}$, $970 \mathrm{~m}, 920 \mathrm{w}, 790 \mathrm{~m}, 730 \mathrm{~m}$ and $700 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone) $7.30-$ $7.55(\mathrm{~m}, 8 \times$ aryl $=\mathrm{CH})$ and $8.05-8.20(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone $) 104.3,117.5,128.3,128.7,128.9,129.1,129.2$, $130.3,131.0,134.2,155.6,162.2,166.6$ and 174.0 (Found: \mathbf{M}^{+}, 308.0677. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $M, 308.0685$).

6-(4-Methoxyphenyl)-3-phenylfuro[3,2-b] furan-2,5-dione (4Methoxypulvinic Acid Dilactone) 30b.-A solution of compound $4 \mathrm{~b}(26 \mathrm{mg})$ in dimethyl sulphoxide $\left(0.4 \mathrm{~cm}^{3}\right)$ and acetic anhydride ($0.2 \mathrm{~cm}^{3}$) was warmed to $100^{\circ} \mathrm{C}$ in a nitrogen atmosphere for 15 min . The mixture was cooled in an ice-bath and then the orange-yellow precipitate was filtered off. The solid was washed with water $\left(5 \mathrm{~cm}^{3}\right)$ and then dried in vacuo to leave the dilactone ($18 \mathrm{mg}, 62 \%$), which recrystallised from benzene as orange microcrystalline plates, m.p. $201-203{ }^{\circ} \mathrm{C}$ (lit., ${ }^{27}$ m.p. 200-201 ${ }^{\circ} \mathrm{C}$), $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 243$ ($\varepsilon 18416$) and $410(\varepsilon 22865)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3000 \mathrm{br} \mathrm{w}, 1825 \mathrm{~s}, 1790 \mathrm{sh} \mathrm{s}$, $1670 \mathrm{~s}, 1610 \mathrm{~s}, 1500 \mathrm{w}, 1365 \mathrm{~m}, 1345 \mathrm{~m}, 1320 \mathrm{~m}, 1305 \mathrm{~m}, 1165 \mathrm{~m}$, $1030 \mathrm{w}, 875 \mathrm{~s}, 840 \mathrm{~m}$ and $660 \mathrm{~m} ; \delta_{\mathrm{H}} 3.87$ (OMe), 7.00 (d, J 9.0 , $2 \times$ aryl $=\mathrm{CH}$), $7.40-7.55(\mathrm{~m}, 3 \times \mathrm{aryl}=\mathrm{CH})$ and $7.90-8.05(\mathrm{~m}$, $4 \times \operatorname{aryl}=\mathrm{CH}) ; \delta_{\mathrm{C}} 55.4,100.9,101.6,114.7,119.0,126.6,128.0$, 129.1, 129.9, 155.1, 157.3, 161.0, 166.0 and 166.1 (Found: C, 71.3; $\mathrm{H}, 3.6 \% ; \mathrm{M}^{+}, 320.0687$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C}, 71.25 ; \mathrm{H}, 3.8 \%$; $M, 320.0683$).
(E)-4-Hydroxy-5-(α-methoxycarbonylbenzylidene)-3-(4-meth-oxyphenyl)furan-2-(5H)-one (Pinastric Acid) 31c and (E)-4-Hydroxy-5-(α-methoxycarbonyl-4-methoxybenzylidene)-3-phen-ylfuran-2-(5H)-one (Isopinastric Acid) 31b.-Aqueous sodium hydroxide ($18 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution; $0.92 \mathrm{~cm}^{3}, 2.8$ equiv.) was
added to a suspension of 4-methoxypulvinic dilactone (1.9 g) in methanol ($25 \mathrm{~cm}^{3}$), and after 5 min the resulting clear solution was diluted with water ($25 \mathrm{~cm}^{3}$) and acidified with concentrated hydrochloric acid. The resulting precipitate was filtered off to give a $4: 1$ mixture ($1.98 \mathrm{~g}, 95 \%$) of the two pulvinates $\mathbf{3 1 b}$ and 31c. The mixture of isomers was boiled in methanol, and the insoluble pinastric acid 31c was filtered off. It recrystallised from benzene as rectangular plates, m.p. $207-209{ }^{\circ} \mathrm{C}$ (lit., ${ }^{28}$ m.p. $202-$ $\left.204^{\circ} \mathrm{C}\right), \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 208,290$ and $400 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ $3000 \mathrm{w}, 2620 \mathrm{w}, 1775 \mathrm{~m}, 1675 \mathrm{~m}, 1600 \mathrm{~s}, 1435 \mathrm{w}, 1110 \mathrm{~s}, 1030 \mathrm{w}$ and $965 \mathrm{~m} ; \delta_{\mathrm{H}} 3.84(\mathrm{OMe}), 3.87\left(\mathrm{CO}_{2} \mathrm{Me}\right), 6.96(\mathrm{~d}, J 9.2,2 \times$ aryl $=\mathrm{CH}), 7.23-7.45(\mathrm{~m}, 5 \times \operatorname{aryl}=\mathrm{CH}), 8.12(\mathrm{~d}, J 9.2,2 \times \operatorname{aryl}=\mathrm{CH})$ and $13.50(\mathrm{OH})$ (Found: $\mathrm{C}, 68.6 ; \mathrm{H}, 4.5 \% ; \mathrm{M}^{+}, 352.0931$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}$: C, 68.2; $\mathrm{H}, 4.6 \% ; M, 352.0942$). The filtrate was evaporated to dryness and the residue was crystallised from methanol to give isopinastric acid 31b, as microneedles, m.p. $122-124{ }^{\circ} \mathrm{C}$ (lit., ${ }^{28}$ m.p. $127-129^{\circ} \mathrm{C}$), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 210,229$, 273 and 375 ; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2960 \mathrm{w}, 2620 \mathrm{w}, 1770 \mathrm{~s}, 1680 \mathrm{~s}$, $1430 \mathrm{~m}, 1320 \mathrm{~s}, 1050 \mathrm{~m}, 965 \mathrm{~s}$ and $910 \mathrm{~m} ; \delta_{\mathrm{H}} 3.85(\mathrm{OMe}), 3.89$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 6.93(\mathrm{~d}, J 9.2,2 \times \mathrm{aryl}=\mathrm{CH}), 7.10-7.45(\mathrm{~m}, 5 \times$ aryl $=\mathrm{CH}), 8.00-8.20(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})$ and $13.67(\mathrm{OH})($ Found: C , $68.3 ; \mathrm{H}, 4.4 \% ; \mathrm{M}^{+}, 352.0947$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{6}: \mathrm{C}, 68.2 ; \mathrm{H}$, $4.6 \% ; M, 352.0942$).
(E)-4-Methoxy-5-(α-methoxycarbonyl-4-methoxybenzyl-idene)-3-phenylfuran- $2(5 \mathrm{H}$)-one (O -Methylisopinastric Acid) 32c.-An ethereal solution of diazomethane was added to a suspension of isopinastric acid (400 mg) in ether $\left(40 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, until the ether solution remained pale yellow. The solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h and the solvent was then removed to leave O-methylisopinastric acid ($426 \mathrm{mg}, 95 \%$) which recrystallised from methanol as yellow needles, m.p. 171$173{ }^{\circ} \mathrm{C}$ (lit. ${ }^{28}$ m.p. $172-175^{\circ} \mathrm{C}$), $\lambda_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 358(\varepsilon 24600)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2940 \mathrm{w}, 1760 \mathrm{~s}, 1725 \mathrm{~s}, 1630 \mathrm{~s}, 1600 \mathrm{~s}, 1370 \mathrm{~m}$, $1290 \mathrm{~m}, 1160 \mathrm{~m}, 985 \mathrm{~m}$ and $940 \mathrm{~m} ; \delta_{\mathrm{H}} 3.76(\mathrm{OMe}), 3.84$ (OMe), $3.89\left(\mathrm{CO}_{2} \mathrm{Me}\right), 6.93(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.40-7.70(\mathrm{~m}$, $5 \times$ aryl $=\mathrm{CH}$) and $7.65(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH})$ (Found: C, 69.1; $\mathrm{H}, 5.0 \%$; $\mathrm{M}^{+}, 366.1141$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6}: \mathrm{C}, 68.8 ; \mathrm{H}$, 4.95%; $M, 366.1098)$.
(E)-4-Methoxy-5-(α-methoxycarbonylbenzylidene)-3-(4-meth-oxyphenyl)furan-2(5H)-one [O-Methylpinastric Acid] 32b.An ethereal solution of diazomethane was added to a suspension of pinastric acid $(100 \mathrm{mg})$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, until the ether solution remained pale yellow. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h and then evaporated to leave O-methylpinastric acid ($106 \mathrm{mg}, 95 \%$), which recrystallised from benzene as pale yellow microcrystals, m.p. $140-142{ }^{\circ} \mathrm{C}$ (lit., ${ }^{5}$ m.p. $140-141^{\circ} \mathrm{C}$), $\dot{\lambda}_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{nm} 342$ ($\varepsilon 19400$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} \quad 2940 \mathrm{w}$, $1770 \mathrm{~s}, 1730 \mathrm{~s}, 1635 \mathrm{~m}, 1605 \mathrm{~s}, 1300 \mathrm{~m}, 1160 \mathrm{~m}$ and $930 \mathrm{~m} ; \delta_{\mathrm{H}} 3.79$ (OMe), 3.84 (OMe), $3.90\left(\mathrm{CO}_{2} \mathrm{Me}\right), 6.96(\mathrm{~d}, J 9.2,2 \times$ aryl $=\mathrm{CH}), 7.30-7.45(\mathrm{~m}, 3 \times$ aryl $=\mathrm{CH}), 7.50(\mathrm{~d}, J 9.2,2 \times$ aryl $=\mathrm{CH})$ and $7.60-7.80(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})($ Found: C, $68.7 ; \mathrm{H}$, $5.0 \% ; \mathrm{M}^{+}, 366.1135$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{6}: \mathrm{C}, 68.8 ; \mathrm{H}, 4.95 \% ; M$, 366.1098).
(E)-5-(α-Carboxy-4-hydroxybenzylidene)-4-hydroxy-3-phenylfuran-2(5H)-one (4'-Hydroxypulvinic Acid) 5d.-A solution of O-methylisopinastric acid (74 mg) in deuteriochloroform ($1 \mathrm{~cm}^{3}$) was treated with iodotrimethylsilane $\left(173 \mathrm{~mm}^{3}, 6\right.$ equiv.) in a ${ }^{1} \mathrm{H}$ NMR tube, sealed under nitrogen and warmed to $55^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and after 3 d the resulting persilylated pulvinic acid was hydrolysed with methanol $\left(6 \mathrm{~cm}^{3}\right)$. The solvent was evaporated to leave a solid residue which was purified by column chromatography to give 4^{\prime}-hydroxypulvinic acid ($22 \mathrm{mg}, 34 \%$), m.p. $95-$ $99^{\circ} \mathrm{C}$ (resolidify $105^{\circ} \mathrm{C}$, remelt $266-289^{\circ} \mathrm{C}$), $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 244 ($\varepsilon 12300$), $263(\varepsilon 14500)$ and $367(\varepsilon 9500) ; \lambda_{\text {max }}(\mathrm{EtOH}+1$
drop NaOH$) / \mathrm{nm} 257(\varepsilon 13100), 267(\varepsilon 12600)$ and $383(\varepsilon$ 20400); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{br} \mathrm{m}, 3000 \mathrm{br} \mathrm{w}, 2550 \mathrm{br} \mathrm{w}, 1745 \mathrm{~m}$, $1675 \mathrm{w}, 1605 \mathrm{~s}, 1595 \mathrm{~s}, 1510 \mathrm{w}, 1445 \mathrm{~m}, 1370 \mathrm{~m}, 1265 \mathrm{~m}, 1060 \mathrm{~m}$, $965 \mathrm{~m}, 920 \mathrm{w}, 785 \mathrm{~m}$ and $690 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ acetone $) 6.90(\mathrm{~d}, J 8.9$, $2 \times$ aryl $=\mathrm{CH}$), $7.29(\mathrm{~d}, J 8.9,2 \times$ aryl $=\mathrm{CH}), 7.20-7.45(\mathrm{~m}$, $3 \times$ aryl $=\mathrm{CH}$) and $8.06-8.17(\mathrm{~m}, 2 \times$ aryl $=\mathrm{CH})\left(\right.$ Found: M^{+}, 324.0562. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6}$ requires $M, 324.0630$). An accurate combustion analysis could not be obtained for this compound.
(E)-(5-(α-Carboxybenzylidene)-4-hydroxy-3-(4-hydroxy-phenyl)furan-2(5H)-one (4-Hydroxypulvinic Acid) 5e.-A solution of pinastric acid (29 mg) in deuteriochloroform $\left(1 \mathrm{~cm}^{3}\right)$ was treated with iodotrimethylsilane ($68 \mathrm{~cm}^{3}, 6$ equiv.) in a ${ }^{1} \mathrm{H}$ NMR tube, sealed under nitrogen and warmed to $55^{\circ} \mathrm{C}$. The reaction was conveniently monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy and after $3 d$ the resulting persilylated derivative was hydrolysed with methanol $\left(6 \mathrm{~cm}^{3}\right)$. The solvent was evaporated to leave a crude residue which was purified by column chromatography to give the pulvinic acid ($12 \mathrm{mg}, 35 \%$), m.p. $85-90^{\circ} \mathrm{C}$, $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 256$ ($\varepsilon 13600$), 286sh and 397 (ε 6900); $\lambda_{\text {max }}(\mathrm{EtOH}+1$ drop NaOH$) / \mathrm{nm} 298$ ($\varepsilon 19700$) and 418 (ε 5900); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400 \mathrm{br} \mathrm{m}, 300 \mathrm{br} \mathrm{m}, 2600 \mathrm{br} \mathrm{w}, 1740 \mathrm{~m}$, $1675 \mathrm{~m}, 1600 \mathrm{~s}, 1365 \mathrm{~m}, 1260 \mathrm{~m}, 1180 \mathrm{~m}, 1060 \mathrm{~m}, 960 \mathrm{~m}, 840 \mathrm{~m}$, 735 m and $710 \mathrm{~m} ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-acetone) $6.91(\mathrm{~d}, J 9.0,2 \times$ aryl $=\mathrm{CH}), 7.42(5 \times=\mathrm{CH})$ and $8.03(\mathrm{~d}, J 9.0,2 \times \operatorname{aryl}=\mathrm{CH})$ (Found: $\mathrm{M}^{+}, 324.0589 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{6}$ requires $M, 324.0630$). An accurate combustion analysis could not be obtained for this compound.

Acknowledgements

We thank the SERC for a studentship (to N. A. P.) and ICI Specialities for financial support. We also thank Professor J. Gripenberg and Dr. R. Edwards for supplying samples of natural xylerythrins and terphenylquinones respectively, and Dr. D. J. Thompson for his interest in this work.

References

1 (a) W. Steglich, H. Besl and A. Prox, Tetrahedron Lett., 1972, 4895; (b) H. Besl, I. Michler, R. Preuss and W. Steglich, Z. Naturforsch., Teil C, 1974, 29, 784; (c) R. L. Edwards and M. Gill, J. Chem. Soc., Perkin Trans. 1, 1973, 1921.
2 For a recent review see: M. Gill and W. Steglich, Fortsch Chem. Org. Naturst, 1987, 51, 1.
3 For a review see: G. Pattenden, Fortsch Chem. Org. Naturst., 1978, 35, 133.
4 (a) D. W. Knight and G. Pattenden, J. Chem. Soc., Chem. Commun., 1975, 876; (b) D. W. Knight and G. Pattenden, J. Chem. Soc., Chem. Commun., 1976, 635; (c) M. J. Begley, D. W. Knight and G. Pattenden, Tetrahedron Lett., 1976, 131.
5 (a) D. W. Knight and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1979, 84; (b) G. Pattenden, N. Pegg and A. G. Smith, Tetrahedron Lett., 1986, 27, 403.
6 Preliminary publication: G. Pattenden, N. A. Pegg and R. W. Kenyon, Tetrahedron Lett., 1987, 28, 4749. For related studies see: M. Gill and M. J. Kiefel, Tetrahedron Lett., 1988, 29, 2085; M. Gill, M. J. Kiefel, D. A. Lally and A. Ten, Aust. J. Chem., 1990, 43, 1497.
7 P. Ruggli and P. Zeller, Helv. Chim. Acta, 1945, 28, 741; L. R. Krepski, S. M. Heilmann and J. K. Rasmussen, Tetrahedron Lett., 1983, 24, 4075; M. Gill, M. J. Kiefel and D. A. Lally, Tetrahedron Lett., 1986, 27, 1933.
8 J. Sedgeworth and G. R. Proctor, J. Chem. Soc., Perkin Trans. 1, 1985, 2677.
9 J. F. W. McOmie, M. L. Watts and D. E. West, Tetrahedron, 1968, 24, 2289.

10 For an alternative synthesis of grevillins see H-J. Lohrisch, L. Kopanski, R. Herrmann, H. Schmidt and W. Steglich, Leibigs Ann. Chem., 1986, 177.
11 H-J. Lohrisch, H. Schmidt and W. Steglich, Liebigs Ann. Chem., 1986, 195.
12 N. G. Clemo, D. R. Gedge and G. Pattenden, J. Chem. Soc., Perkin

Trans. 1, 1981, 1448; cf. H-H. Lee, Y-T. Que and S. Ng, J. Chem. Soc., Perkin Trans. 1, 1985, 453.
13 P. R. Shildneck and R. Adams, J. Am. Chem. Soc., 1931, 53, 2373
14 J. Gripenberg and J. Martikkala, Acta Chem. Scand., 1969, 23, 2583.
15 R. J. Wikholm and H. W. Moore, J. Am. Chem. Soc., 1972, 94, 6152.
16 P. Patel and G. Pattenden, J. Chem. Soc., Perkin Trans. 1, 1991, 1941.
17 D. A. Evans, L. K. Truesdale and G. L. Carroll, J. Chem. Soc., Chem. Commun., 1973, 55.
18 P. Ruggli and P. Zeller, Helv. Chem. Acta, 1945, 28, 741.
19 H-J. Lohrisch and W. Steglich, Tetrahedron Lett., 1975, 2905.
20 N. A. Pegg, Ph.D. Thesis, University of Nottingham, 1987.
21 H-W. Wanzlick and U. Jahnke, Chem. Ber., 1968, 101, 3753.
22 J. Gripenberg and J. Martikkala, Acta Chem. Scand., 1970, 24, 3444.

23 A. Spiegel, Justus Liebigs Ann. Chem., 1883, 219, 1.
24 A. Schonberg and A. Sina, J. Chem. Soc., 1946, 601.
25 R. Ramage, G. J. Griffiths and J. N. A. Sweeney, J. Chem. Soc., Perkin Trans. 1, 1984, 1547.
26 W. Zopf, Justus Liebigs Ann. Chem., 1895, 284, 107.
27 B. Akermark, Acta Chem. Scand., 1961, 15, 1695.
28 S. Agarwal and T. Seshadri, Ind. J. Chem., 1964, 2, 17.

